

ALR-F800

ALR-9900+

ALR-9680

ALR-9650

ALIEN TECHNOLOGY
®

READER

INTERFACE

GUIDE

All Fixed Readers

November 2019

Legal Notices

Copyright ©2019 Alien Technology, LLC. All rights reserved.
Alien Technology, LLC has intellectual property rights relating to technology embodied in the products described in this document,
including without limitation certain patents or patent pending applications in the U.S. or other countries.

This document and the products to which it pertains are distributed under licenses restricting their use, copying, distribution and
decompilation. No part of this product documentation may be reproduced in any form or by any means without the prior written
consent of Alien Technology, LLC and its licensors, if any. Third party software is copyrighted and licensed from Licensors. Alien,
Alien Technology, the Alien logo, Squiggle and other graphics, logos, and service names used in this document are trademarks of
Alien Technology, LLC in the U.S. and other countries. All other trademarks are the property of their respective owners. U.S.
Government approval required when exporting the product described in this documentation.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions. U.S.
Government: If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth
in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions)
and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

This Product includes certain open source software ("Program") licensed pursuant to the GNU General Public License, Version 2,
1991 (the "License"). Pursuant to the terms of the License, we will make available to you, for three years from the date of purchase
of this Product from Alien Technology, LLC, a complete machine-readable copy of the source code of the Program. We will provide
the Program to you on a medium customarily used for software interchange, and may charge you an amount no more than our cost
of physically performing source distribution.

This product is covered by one or more of the following U.S. patents: 7716208, 7716160, 7688206, 7671720, 7659822, 7619531,
7615479, 7598867, 7580378, 7576656, 7562083, 7561221, 7559486, 7559131, 7554451, 7411503, 7385284, 7377445, 7364084,
7353598, 7342490, 7324061, 7321159, 7301458, 7295114, 7288432, 7265675, 7262686, 7215249, 7214569, 7199527, 7193504,
7173528, 7172910, 7172789, 7141176, 7113250, 7101502, 7080444, 7070851, 7068224, 7046328, 6998644, 6988667, 6985361,
6980184, 6970219, 6952157. Other patents pending.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARANTEES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGMENT ARE HEREBY DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

 TABLE OF CONTENTS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

i

Alien Technology®

Reader Interface Guide

ALR-F800, 9900+, ALR-9680, ALR-9650

Table of Contents

CHAPTER 1 INTRODUCTION AND READER SETUP 1
Audience ... 1
Type Conventions ... 2
Requirements .. 2
Communicating with the Reader .. 3
Serial Communication .. 3

Serial Configuration.. 3
Network Communication .. 5

Determine the Reader's Network Settings... 5
Connecting via TCP/IP ... 6
TCP/IP Configuration ... 6

CHAPTER 2 READER FUNDAMENTALS .. 8
Introduction ... 8
Reader Discovery and the Reader Heartbeat .. 8

DHCP and Automatic Discovery .. 8
Serial Interrogation ... 8
Network Heartbeats ... 9

TagList Concepts .. 10
PersistTime .. 11
Tag Details ... 11
TagList Size ... 11

Reading Tags over the Network ... 11
Interactive Mode .. 11
Autonomous Mode ... 12

Defining the Autonomous Read Operation .. 12
AutoMode Examples .. 15

Notification Mode .. 16
NotifyTime .. 16
NotifyTrigger ... 16
NotifyAddress ... 16
NotifyFormat ... 17

Listening for Tags over the Network ... 19

CHAPTER 3 TAG FUNDAMENTALS .. 20
Introduction ... 20
Alien RFID Tags .. 20

Alien Tags .. 20
Acquisition Modes .. 20

Inventory... 20
Global Scroll ... 21

Masks and Tag Memory Structure ... 22
Class 1/Gen 2 Tag Memory ... 22
Addressing a Subset of Tags ... 23

CHAPTER 4 ALIEN READER PROTOCOL .. 24
Reader Operation Overview ... 24
Overview of Commands ... 25

Command Format .. 25
Suppressing Command Prompts ... 26
"Get" and "Set" Compatibility ... 26
Command History Buffer, and "!" ... 26
XML Messages .. 27
Command List .. 28

General Commands .. 35
Help (h) ... 35
Info (i) ... 35
!... 36
Save ... 37
Quit (q) ... 37
Function.. 37
ReaderName .. 38

TABLE OF CONTENTS

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

ii

ReaderType ... 38
ReaderVersion ... 38
DSPVersion .. 39
ReaderNumber ... 39
BaudRate ... 39
Uptime .. 40
Username ... 40
Password.. 40
MaxAntenna ... 41
AntennaSequence (ant) ... 41
RFAttenuation .. 42
RFLevel .. 44
RFModulation ... 45
FactorySettings .. 46
Reboot .. 46
Service ... 47
MyData ... 49
ETSIMode .. 49

Network Configuration Commands ... 50
MACAddress .. 50
DHCP ... 50
DHCP6 ... 50
DHCPTimeout .. 50
IPAddress ... 51
IPAddress6 ... 51
Gateway ... 51
Gateway6 ... 51
Netmask ... 52
Netmask6 ... 52
DNS .. 52
Hostname ... 53
NetworkUpgrade .. 53
UpgradeAddress .. 54
UpgradeNow .. 54
NetworkTimeout ... 57
CommandPort .. 58
CommandPortLocal ... 58
AcceptConnections .. 58
Ping .. 59
HeartbeatPort ... 60
HeartbeatTime ... 60
HeartbeatAddress .. 61
HeartbeatCount .. 61
HeartbeatNow .. 61
ReaderList .. 62
WWWPort... 63
HostLog .. 63
DebugHost ... 64

Time Commands ... 65
TimeServer ... 65
TimeZone ... 66
Time ... 66

External I/O Commands .. 67
ExternalInput .. 67
ExternalOutput ... 67
InvertExternalInput ... 68
InvertExternalOutput .. 68
InitExternalOutput .. 69
ExternalInputDebounce ... 69
Get IOList (ios) ... 70
IOPersistTime .. 70
IOType .. 71
IOListFormat .. 72
IOListCustomFormat .. 74
Clear IOList ... 75
IOStreamMode ... 75
IOStreamAddress... 75
IOStreamFormat .. 76
IOStreamCustomFormat .. 77
IOStreamKeepAliveTime ... 77
BlinkLED... 79

TagList Commands ... 80
Get TagList (t) .. 80
PersistTime .. 80
TagListFormat .. 81
TagListCustomFormat ... 82
TagDataFormatGroupSize ... 85
TagListAntennaCombine ... 86
TagListMillis ... 87

 TABLE OF CONTENTS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

iii

Clear TagList .. 87
TagStreamMode .. 87
TagStreamAddress .. 88
TagStreamFormat .. 88
TagStreamCustomFormat ... 89
TagStreamKeepAliveTime ... 89
StreamHeader .. 90
TagStreamServer ... 91

Macro Commands ... 92
MacroList .. 92
MacroView ... 93
MacroDel .. 93
MacroDelAll .. 94
MacroRun ... 94
MacroStartRec MacroStopRec .. 95
MacroCopy ... 96

Acquire Commands .. 97
AcquireMode .. 97
TagType ... 97
AcqG2Cycles ... 98
AcqG2Count ... 98
AcqG2Q.. 98
AcqG2QMax ... 99
AcqG2Select .. 99
AcqG2Session ... 100
G2Wake ... 100
AcqG2Mask .. 101
AcqG2MaskAction.. 102
AcqG2MaskAntenna .. 103
AcqG2SL .. 104
AcqG2AccessPwd.. 104
AcqG2Target .. 105
AcqG2TagData .. 105
AcqG2AntennaCombine .. 106
AcqG2Ops .. 107
Alien BlastWrite™ – Special Higgs4 Tag Capability ... 115
AcqG2OpsMode ... 117
AcqTime ... 118
SpeedFilter ... 118
RSSIFilter ... 120
TagStreamCountFilter .. 121
TagAuth .. 122

AutoMode Commands .. 124
AutoMode ... 124
AutoWaitOutput .. 124
AutoStartTrigger ... 125
AutoStartPause .. 125
AutoWorkOutput ... 126
AutoAction .. 126
AutoStopTrigger ... 127
AutoStopTimer ... 127
AutoStopPause .. 128
AutoTrueOutput .. 128
AutoTruePause .. 128
AutoFalseOutput .. 129
AutoFalsePause ... 129
AutoErrorOutput ... 129
AutoProgError .. 130
AutoModeReset ... 130
AutoModeTriggerNow .. 130

Notify Mode Commands ... 131
NotifyMode ... 131
NotifyAddress ... 131
NotifyTime .. 132
NotifyTrigger ... 132
NotifyFormat ... 133
NotifyHeader .. 134
NotifyKeepAliveTime .. 135
MailServer .. 135
MailFrom .. 135
NotifyRetryCount .. 136
NotifyRetryPause ... 136
NotifyQueueLimit .. 136
NotifyInclude .. 137
NotifyNow ... 138

CHAPTER 5 TAG PROGRAMMING .. 139
Tag Memory Structure .. 139

Class 1/Gen 2 Tag Memory ... 139

TABLE OF CONTENTS

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

iv

Programming Distance & Power Levels .. 140
Programming Power .. 140
Programming Problems ... 140

Programming Commands Summary ... 141
Program, Erase, and Verify Functions ... 143

ProgramEPC .. 143
ProgramAndLockEPC .. 144
ProgramAccessPwd ... 144
ProgramKillPwd .. 145
ProgramUser .. 145
ProgramAndLockUser .. 146
G2Erase ... 146
Erase .. 147

Lock, Unlock, and Kill Functions ... 147
LockEPC .. 147
LockAccessPwd ... 148
LockKillPwd .. 149
LockUser .. 149
LockUserBlocks ... 150
HideAlienUserBlocks ... 151
UnlockEPC ... 152
UnlockAccessPwd.. 153
UnlockKillPwd .. 153
UnlockUser ... 154
HideAlienUserBlocks ... 154
Kill ... 155

Programming Configuration and Data Storage Commands ... 156
ProgProtocol .. 156
ProgAntenna .. 157
ProgG2NSI ... 157
ProgEPCData ... 158
ProgUserData .. 158
ProgEPCDataInc .. 159
ProgUserDataInc .. 160
ProgEPCDataIncCount .. 160
ProgUserDataIncCount .. 161
ProgG2AccessPwd .. 162
ProgG2KillPwd ... 162
ProgG2LockType ... 162
ProgDataUnit .. 163
ProgBlockSize .. 163
ProgBlockAlign ... 164
ProgAttempts ... 164
ProgSuccessFormat... 165
ProgSingulate ... 165

Low-Level Programming – TagInfo, G2Read, G2Write ... 166
TagInfo ... 166
G2Read .. 167
G2Write .. 168

Programming an Entire Tag Image (Alien Higgs Tags Only) .. 170
ProgramAlienImage ... 170
ProgAlienImageMap .. 171
ProgAlienImageNSI.. 175

Programming Tags in AutoMode ... 176
AutoAction = ProgramEPC (was “Program”) ... 176
AutoAction = ProgramAndLockEPC .. 176
AutoAction = ProgramUser .. 177
AutoAction = ProgramAndLockUser .. 177
AutoAction = ProgramAlienImage.. 177
AutoAction = Erase .. 178

CHAPTER 6 LLRP ... 179
LLRP and ARP Coexistence ... 179
Controlling the LLRP Service ... 179
LLRP References .. 180

LLRP Version 1.0.1 vs. Version 1.1.0 .. 180
Alien LLRP Capabilities and Optional Features .. 181

Alien LLRP RF Modes ... 182
Alien LLRP Extensions ... 183

Dynamic Authentication ... 183
Write Power Control ... 184
User Read Locks .. 184

APPENDIX A DTDS FOR XML DATA STRUCTURES 186
Heartbeat DTD ... 186
TagList DTD ... 186
Notification DTD .. 186

 TABLE OF CONTENTS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

v

APPENDIX B UPGRADING READER FIRMWARE (GUI) 187
ALR-F800 Web Interface ... 187
ALR-9900/9680/9650 Web Interface.. 189
Pulling Firmware Updates .. 189

APPENDIX C UPGRADING READER FIRMWARE (PROGRAMMATIC) 190
File Structure of an Upgrade .. 190
Pushing Upgrades .. 190

HTTP Post Request ... 190
HTTP Post Response .. 191
Sample Java Implementation... 191

Pulling Upgrades .. 193
Configuring the Reader .. 193
Enabling Upgrade Pulls ... 194
Setting up the Upgrade Host.. 194
How It Works .. 194

APPENDIX D EN 300 220 DUTY CYCLING .. 196
Duty Cycle Control in AutoMode ... 196

APPENDIX E EN 302 208 OPERATION.. 197
Setting Fixed Frequency Operation (ALR-F800/9900+/9680 EMA Only) 197

APPENDIX F ERROR CODES .. 198
General Errors (1-49) ... 198
Macro Errors (50-60) .. 199
DSP Errors (128-255) .. 199
G2 Tag Errors (256-511) .. 200

CHAPTER 1 INTRODUCTION

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

1

CHAPTER 1

Introduction and Reader Setup

This Reader Interface Guide provides instructions for installing and operating the following Alien
Technology® RFID readers:

 ALR-F800

 ALR-9900, ALR-9900+
Note: ALR-9900+ supports the same commands as the ALR-9900 with a few
exceptions explicitly specified in this manual.

 ALR-9680

 ALR-9650 (Smart Antenna)

This guide also details the protocol used between a host and these readers for system configuration and
the acquisition of data by application software.

This document is designed for use by RFID system integrators and software developers - those who wish
to develop software products and extended systems that take full advantage of the RFID Reader's
capabilities.

For an overview of RFID technology and a glossary of terms, please refer to the Alien RFID Primer
document.

Audience

For the purposes of this document, we assume the readers of this Reader Interface Guide:

 are competent PC users

 may be IT specialists, network specialists or programmers

 have minimal previous knowledge of RFID technology

 are experienced in software development and/or hardware systems integration

Additionally, it is assumed that:

 Users installing the reader via direct serial communication are skilled in the
application of RS-232 serial protocol.

 Users installing the reader for network communication are skilled in basic network
configuration.

 Programmers are competent in at least one programming or scripting language and
have the ability to issue ASCII-based commands with that language.

INTRODUCTION CHAPTER 1

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

2

Type Conventions

 Regular text appears in a regular font.

 External files and documents are referenced in italic text.

 Specific characters and commands to be typed are shown within quotation marks,

and/or in fixed-width font. Example: At the prompt type “DHCP=ON”.

 Values to be provided and typed in by the user are shown within brackets in upper

and lowercase. Example: At the prompt type “IPAddress=[IP address value]”

or “IPAddress=xxx.xxx.xxx.xxx”. The actual command typed in would appear

as: “IPAddress=10.1.60.5”.

 Blocks of sample code or commands appear:

 indented, in a fixed-width serif font.

 Keys to be pressed are shown in brackets and all caps. Example: Press the [ENTER]
key.

 Upon entering any command instruction, you must press [ENTER] to send the
command.

 RFID Reader commands are not case sensitive. Although, for clarity, the commands
may be shown in upper and lower case in this document, you may type them in all
lowercase characters, if you prefer.

 A space is required between the command (verb) such as “get” or “set” and the

specific parameters, as in the example “get IPAddress”. However, no space is

required between the parameter elements such as “IP” and “address.”

Requirements

In order to fully interface with the RFID Reader you need the following:

 a PC running Windows and an available RS-232 serial port

 host software (Alien RFID Gateway demo software, or your own custom software)

 RFID Tags (AIDC Class I compliant)

Serial communication requires:

 a serial communications program (such as HyperTerminal, TeraTerm, or PuTTy)
running on any computer

Ethernet communication requires:

 an Ethernet network

 a Telnet communication program

CHAPTER 1 INTRODUCTION

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

3

Communicating with the Reader

This section of the Reader Interface Guide describes how to connect the reader on a host computer, as
well as how to issue commands and interact with the reader using two different communication methods:
serial (RS-232) and Telnet (TCP/IP).

Whether using direct serial communication with the reader or using one of the network communication
options, you may still need serial communications for initial reader setup.

Alien also provides extensive examples of code that use Java, Visual Basic, and .NET programming
languages. These examples serve as models for developing new software for the reader, and can be
found on the reader CD (if provided with your kit), at the Alien Partner Portal website
(http://partners.alientechnology.com), or on the public FTP server (ftp://ftp.alientechnology.com).

Serial Communication

This method is helpful for installing a new RFID Reader. Serial communication requires no pre-
configuration and can be performed easily with most computers. This method enables real-time operation
of the reader via a serial communications (COM) port. Serial communication is the simplest means by
which to interface with the reader and implement the Alien Reader Protocol.

The reader is configured to use DHCP to acquire its network settings, and while this method of network
configuration is simple and convenient, the problem exists that in order to communicate with the reader,
you have to know its IP address. Alien readers have a heartbeat mechanism to assist in discovery of
readers on the network, but this mechanism requires a host application (such as the Gateway
demonstration software) to intercept the heartbeat messages and report them back to you. In these
circumstances, the serial interface can be used to determine the reader's network address.

Serial Configuration
Whether you will ultimately be operating the reader directly via serial communications or via a network
connection, you need to install the reader initially using the serial port instructions.

NOTE: Example screens shown in this section are from HyperTerminal.

1. Ensure the reader is properly connected to power and at least one antenna. See your
reader's Hardware Setup Guide for more information.

2. Connect one end of the serial cable to the reader’s RS-232 port and the other end to an

available COM port on the host computer.

3. Launch the desired serial communications program, such as HyperTerminal, TeraTerm, or

PuTTy.

4. Enter (or verify) the following settings to configure the serial communications program:

 Baud Rate : 115200
 Data Bits : 8
 Parity : None
 Stop Bits : 1
 Flow Control : None

Once configured, the software should allow you to communicate with the RFID Reader. HyperTerminal
example configuration screens are shown below:

INTRODUCTION CHAPTER 1

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

4

5. It is also a good idea to make sure your terminal software sends linefeeds as well as
carriage returns.

6. Power up the reader, and observe the information reported over the serial port.
Perhaps the most important bits of information are the network settings, since you need
to know this in order to communicate with the reader using TCP/IP.

The reader displays a block of text similar to the following, toward the end of the bootup:

===

Network Settings:

 MAC Address : 00:80:66:10:2D:12

 Hostname : alien-102D12

 DHCP : 1

 DHCPTimeout : 30

 IP Address : 10.9.8.10

 Netmask : 255.255.255.0

 Gateway : 10.9.8.2

 DNS : 10.9.8.1

 TimeServer : time-a.timefreq.bldrdoc.gov

 TimeZone : -7

 CommandPort : 23

===

CHAPTER 1 INTRODUCTION

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

5

This trace indicates that the reader can be contacted over TCP/IP at the address 10.9.8.10, on port 23.

7. You eventually see the “Boot> Ready” indicator, and after pressing the [ENTER] key
you see the "Alien>" command prompt. At the command prompt, you may now type any
reader command followed by the [ENTER] key to submit the command.

The following basic commands are helpful in verifying the reader-host interface:

 "Help" (or “h”) – provides a list of all commands available

 "Info" (or “i”) – provides a list of current settings for the reader

 "get TagList" (or "t") – scans field immediately for tags and reports the results

NOTE: RFID Reader commands are not case-sensitive and may be typed in all lowercase characters, if
preferred.

For a detailed explanation of all commands available, please refer to the chapter titled Alien Reader
Protocol.

Network Communication

TCP/IP communication requires a network connection via the reader’s Ethernet port and allows the
reader to operate like a Telnet server.

This mode offers the same form of command line interaction with the RFID Reader as the serial interface,
but requires the RFID Reader to be configured for and running on a network in order to use it.

By default, all RFID Readers are pre-configured to use DHCP when presented with an Ethernet
connection. However, you must first establish a direct serial connection in order to learn the reader’s IP
Address, or be able to detect "heartbeat" messages sent out over the network by the reader.

Determine the Reader's Network Settings
Once your readers are set up and configured, you should either keep a record of their addresses, or use
some other mechanism for finding them, such as the reader's Heartbeat messages (described later).
Following are instructions for querying the reader for this information.

There are five network commands that are used for querying the reader for its network configuration.
These commands can be issued directly in the reader's serial interface.

 DHCP?

 IPAddress?

 Netmask?

 Gateway?

 DNS?

Another alternative is to issue the "info network" command to get a summary of network settings.
Once you have the IPAddress and Netmask of the reader, you can connect to it using TCP/IP.

INTRODUCTION CHAPTER 1

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

6

Connecting via TCP/IP
The reader's TCP/IP interface mimics a basic telnet interface, so you can use any telnet client to connect
to the reader. Windows users can use the telnet command at the command prompt or "Start -> Run"
window:

telnet <IPAddress> <CommandPort>

For instance, in the earlier example, the command would be:

telnet 10.9.8.10 23

To do this programmatically, simply open a TCP socket to the reader on its command port (default is 23)
and begin reading. Refer to chapter 4, Alien Reader Protocol, for details on how to properly terminate
command strings, detect the end of a reader's response, and disable the "Alien>" prompt text from the
returned data. Default settings are:

Username = alien

Password = password

You are now ready to interact with the reader. For telnet operation, you use the same text-based
commands as in direct serial communication. The only difference is in the use of the “q” command to quit
the telnet session and disconnect the session. The reader automatically disconnects an idle TCP/IP
connection, if there has been no activity longer than the NetworkTimeout setting.

Reader commands and instructions on their use are provided later in the chapter titled, Alien Reader
Protocol.

TCP/IP Configuration
To configure the system for network operation, you use the commands shown under the "NETWORK"
heading of the reader's "Help" display.

There are five network commands that are used for network configuration:

 DHCP

 IPAddress

 Netmask

 Gateway

 DNS

1. To view the command list, type “h” or “help”.

If DHCP is supported at your site:

2. Type “DHCP=ON”. DHCP automatically configures the rest of the network parameters the next

time the reader boots.

3. Skip to step 7.

If DHCP is not supported at your site:

4. Type “DHCP=OFF”. The reader returns the message “DHCP = OFF”.

5. Contact your system administrator for the following parameter values:

 IPAddress
 Netmask (also known as Subnet Mask)

CHAPTER 1 INTRODUCTION

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

7

 Gateway
 DNS (optional)

6. Type each of the 4 commands below with the assigned values:
 IPAddress = xxx.xxx.xxx.xxx

 Netmask = xxx.xxx.xxx.xxx

 Gateway = xxx.xxx.xxx.xxx

 DNS = xxx.xxx.xxx.xxx (optional)

As each value is accepted, the reader replies with the accepted value.

Setting incorrect values for Gateway and DNS may result in the reader taking longer to boot
up. This is caused by failed attempts to resolve various internet addresses. An invalid
Gateway address may prevent the reader from initiating its own TCP network connections
(tag streaming, automode notifications, etc.)

7. Type “Save” to direct the reader to store the new values in flash memory, then “Reboot” to

reboot the reader and apply the new network settings.

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

8

CHAPTER 2

Reader Fundamentals

This chapter provides an overview of the major features found in an Alien RFID Reader. Specific
instructions for setting up a reader are provided in the previous chapter. Reader commands and their
uses are covered in the next chapter.

Introduction

The most basic function of the RFID Reader is to read RFID tags and to give a user or application access
to a list of these tags. The RFID Reader is designed to perform this function either connected to a host via
serial cable, or on a network.

To assist in the administration of networked operation, the reader has two important features designed to
simplify network management:

 Reader "heartbeats" allow network applications to easily discover readers on a
network.

 AutoMode allows unattended readers to look for tags and send notification messages
to listening services on the network when certain conditions arise.

These important concepts, along with the basics of communicating with the reader, are discussed in this
chapter.

Reader Discovery and the Reader Heartbeat

One of the problems common to many network appliances is simply discovering the address of the device
on the network. To operate these devices over the network, users must know the device’s IP address.

If an IP address is hard-coded into the device, this problem is solved, and often a label on the device can
be used to indicate the IP address.

However, many systems do not use hard-coded IP addresses, requiring the network to assign an address
each time the device is booted. This is called DHCP, which stands for Dynamic Host Configuration
Protocol.

DHCP and Automatic Discovery
The DHCP mode of configuration eliminates the need for the user to perform network configuration for the
device. The device simply is plugged into the network socket, booted, and immediately becomes a citizen
of the network, acquiring its network settings directly from the DHCP server.

However, the user still needs to learn the IP address of the device. All that is known at this point is that
the device does have an IP address and has booted itself on the network. The actual IP address the
device is using is still not known.

Serial Interrogation
One of the simplest methods to find out the reader’s IP address is to connect via the RS-232 port and

type the command “IPAddress?“. The reader responds with the IP address currently in use.

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

9

However, this requires a physical connection between a host computer and the reader —a connection
that in many cases is simply not practical to set up.

Network Heartbeats
Another way to find out a reader’s IP address is to listen for its heartbeat messages over the network.

After a reader has booted successfully onto a network it periodically broadcasts a heartbeat message
over the network. This heartbeat can be intercepted by network applications, and provides enough
information about the reader to locate it on the network and begin communication with it.

In network parlance, the heartbeat message is sent via UDP (Universal Datagram Protocol) packets to all
network addresses on the reader’s subnet.

There are three relevant configuration options available via the reader’s command line to affect this
heartbeat:

 HeartbeatTime: This command specifies the time interval separating successive
heartbeat messages sent out over the network. The time is specified in seconds, with
a value of zero turning off the heartbeats. The default value is 30 seconds, i.e. send
out a heartbeat message every 30 seconds.

 HeartbeatPort. This command specifies the port number that the UDP heartbeat
messages are addressed to. This is the port number that must be listened to by
interested parties on the network. The default value for this setting is 3988, i.e. send
out a heartbeat message to UDP port 3988 of every machine on the subnet.

 HeartbeatAddress. This command specifies a particular IP Address that the UDP
heartbeat messages are addressed to. The default value is 255.255.255.255, which
is a special "multicast" addressed which allows any machine on the subnet to receive
the heartbeats. Any other HeartbeatAddress results in the heartbeats going only to
the machine at that address.

 HeartbeatCount. This command allows you to specify the total number of heartbeat
messages to send. This allows for the immediate discovery of readers as they come
online, but doesn't continuously load the network with unnecessary traffic.

The format of the heartbeat is a small XML text-based message, containing information about the reader
(name and type), the reader’s network connection (IP address and command port) and the length of time
until the next heartbeat is sent out.

<Alien-RFID-Reader-Heartbeat>

 <ReaderName>Alien RFID Reader</ReaderName>

 <ReaderType>

 Alien RFID Tag Reader, Model: ALR-9900

 (Four Antenna / Gen 2 / 902-928 MHz)

 </ReaderType>

 <IPAddress>10.1.60.5</IPAddress>

 <CommandPort>23</CommandPort>

 <HeartbeatTime>30</HeartbeatTime>

 <MACAddress>01:02:03:04:05:06</MACAddress>

 <ReaderVersion>07.07.18.00</ReaderVersion>

</Alien-RFID-Reader-Heartbeat>

HEARTBEAT XML TAGS
 ReaderName is the user-defined name associated with the reader. This name can

be set by a user to help identify which reader is which. For example, multiple readers
in a warehouse may be named “loading bay 1”, “loading bay 2” etc., thus providing a
clear indication as to the physical location of the reader.

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

10

 ReaderType details the specific type of reader sending out the heartbeat. This
information is hard-coded into the reader’s firmware and is not user-configurable.

 IPAddress and CommandPort elements detail the location of the reader on the
network. The IP address is simply the network address of the reader. The command
port is the port number on which the reader is listening for incoming user commands.
Typically, this is port 23, the standard telnet port, allowing a user to communicate
with the reader over the network by typing “telnet [IPAddress]” into the command line
of most computers.

 HeartbeatTime is the time until the next heartbeat. This time (in seconds) enables
any application software to detect when a reader is powered-down or the network
connection breaks; if a new heartbeat is not received after the expected time elapses,
then such an interruption to normal service can be detected.

 MACAddress gives the unique identifier assigned to the reader's network interface
hardware by the manufacturer.

 ReaderVersion gives the version information for the software currently running in the
reader.

HEARTBEATS AND SOFTWARE
The Alien SDK provides source code and software libraries in Java, .NET, and Visual Basic to listen for
these network heartbeats.

The Alien RFID Gateway application uses the Java version of these libraries to build its active reader list
on the main screen. The latest Gateway version at the time of this writing is v2.25.00. Alien recommends
users first download and install the latest version of Gateway software.

TagList Concepts

During normal operation, the reader always has a concept of "what's out there" by maintaining an internal
list of the tags that are active. Active tags are those read by the reader at least once within a predefined
interval. Any new tags presented to the reader are added to the list, and any tags that have not been
seen for a period of time (the PersistTime) are removed from the list.

At any time, a programmatic call can be made to the reader to retrieve this list of tags.

8000 0100 8820 FFA4

8000 0100 8820 3F02

8000 0400 0232 3F06

8020 0150 2057 3F12

8000 0200 8020 3F16

8001 02DE 34FF 3F17

8000 0100 8820 3F09

New tags detected are added to the
TagList.

Reader TagList...

All tags listed are active.

Tags not read for a while are
removed from the list.

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

11

PersistTime
The “persist time” defines the duration between the time a tag was last read and the time it is
automatically purged from the TagList. Setting this value to a small time (~1 second) causes the TagList
to contain only what the reader has seen in the last second, i.e., a fair representation of what the reader
sees at any one time. Setting the PersistTime to a long duration allows a history of tags to be built up. For
example, setting the PersistTime to 3600 seconds allows a list to be built up detailing all the tags that
were read over the last hour.

Setting PersistTime to -1 has the special effect of keeping tags on the list indefinitely until the TagList is
delivered to a host, at which point the TagList is cleared. This is the default value.

Tag Details
Each entry in the TagList contains a number of sub fields: the Tag's unique ID, the read count (the
number of times the tag has been read in the current session), the discovery time (the time the tag was
first seen), the last observed time, the antenna (the antenna ID that the tag was last read from), and
others.

TagList Size
The TagList can hold up to 6000 tag entries. Some reader models also have the ability to retain some of
the TagList data across power outages,

Reading Tags over the Network

The Alien RFID reader provides two methods with which to read tags: Interactive Mode and Autonomous
Mode.

 Interactive Mode - the controlling application issues commands to the reader to read
tags. This command always immediately returns with a list of tags in the reader's field
of view.

 Autonomous Mode - the reader constantly reads tags, and may initiate a
conversation with a network listener when certain events arise.

While both methods are equally useful, the choice ultimately is determined by the needs of the controlling
application.

Although it may be easier and require less coding to work in Interactive Mode, a little investment in
programming effort lets the user set up AutoMode to provide a more scalable system for multiple readers.

Interactive Mode

Reading tags in Interactive Mode is as simple as issuing a single command to the reader. This command

is “TagList?“, or simply "t". This causes the reader to initiate a tag search, and report back the current

TagList. Depending on the PersistTime and recent tag activity, the returned data may include tag read
data from previous reads. Following is an example of what the default TagList format ("Text") looks like.

Tag:E200 3411 B801 0108, Disc:2007/06/29 08:30:49, Last:2007/06/29 10:38:12, Count:292, Ant:0, Proto:2

Tag:4461 7669 6445 2E4B, Disc:2007/06/29 10:38:13, Last:2007/06/29 10:38:13, Count:187, Ant:1, Proto:2

The format of the TagList can be specified using the “TagListFormat“ command. One of the options is

XML format, which would return the same TagList as:

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

12

<?xml version="1.0" encoding="UTF-8"?>

<Alien-RFID-Tag-List>

 <Alien-RFID-Tag>

 <TagID> E200 3411 B801 0108</TagID>

 <DiscoveryTime>2007/06/29 08:30:49</DiscoveryTime>

 <LastSeenTime>2007/06/29 10:38:12</LastSeenTime>

 <ReadCount>292</ReadCount>

 <Antenna>0</Antenna>

 <Protocol>2</Protocol>

 </Alien-RFID-Tag>

 <Alien-RFID-Tag>

 <TagID>1155 4461 7669 6445 2E4B</TagID>

 <DiscoveryTime>2007/06/29 10:38:13</DiscoveryTime>

 <LastSeenTime>2007/06/29 10:38:13</LastSeenTime>

 <ReadCount>187</ReadCount>

 <Antenna>1</Antenna>

 <Protocol>2</Protocol>

 </Alien-RFID-Tag>

</Alien-RFID-Tag-List>

Additional formats include "Terse", and "Custom". See the TagListFormat section in Chapter 4, Alien
Reader Protocol for details on all of the TagList formats.

Autonomous Mode

AutoMode is a configuration and operation mode that enables automated monitoring and handling of tag
data. You first issue a series of configuration commands to the reader which specify how and when to
read tags, and optionally what to do with the tag data.

Once configured in this mode, the reader can be left to operate on its own. An application on a host
computer can then be set up to listen for notification messages from the reader containing any tag data
that it has read.

One of the major benefits to this mode of operation is that many readers can be configured to send tag
messages to a single host. Thus, a single application can listen for and process data from multiple
readers over the network.

Defining the Autonomous Read Operation
AutoMode functionality is summarized in the state diagram shown below. Fundamentally, a reader
operating in AutoMode moves between several states: Waiting, Working, Evaluation, and Notification.
Waiting, Working, and Evaluation states have associated with them an optional digital output state that is
set upon entering the state. Movement from one state to the next is initiated by an expiration of a timer, a
triggered event on the digital input lines, or changes to the TagList.

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

13

Each element of the State Diagram is described below. Associated with each element are one or more
commands that are used to configure the reader.

Autonomous Mode State Diagram

ENTER AUTOMODE
(Not shown on the state diagram.)

The user puts the reader into AutoMode with the “AutoMode“ command. “AutoMode=On“ puts the reader

into AutoMode. “AutoMode=Off“ turns off AutoMode.

WAITING STATE
Upon entering AutoMode, the reader automatically enters the Waiting State. While waiting for a Start
Working Trigger (see below) the reader holds the digital output lines at a value set by the

AutoWaitOutput command. For example, “AutoWaitOutput=1“ causes digital output line 1 to go high

while the reader is in the Waiting state.

START WORKING TRIGGER
The receipt of a trigger pattern on the digital input lines causes the reader to move from the Waiting state

to the Working state. The start condition is set by the AutoStartTrigger command. The

AutoStartTrigger command takes two parameters, a rising edge pattern and a falling edge pattern.

Each pattern is a single integer which is a bitmap of the desired input triggers, where input #1 is
represented by bit 0, input #2 is represented by bit 1, etc.

Wait

(AutoWaitOutput)

AutoStartTrigger?

AutoAction

(AutoWorkOutput)

AutoStopTimer Expired

or AutoStopTrigger?

Evaluation
(New Tag? Programmed?)

True Evaluation

(AutoTrueOutput)

False Evaluation

(AutoFalseOutput)

AutoTruePause

Expired?
AutoFalsePause

Expired?

Notification

Needed?

Issue

Notification

no

no

no

no

AutoStartPause Expired?

no

no

AutoStopPause Expired?

no

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

14

The table below illustrates the bitmap values that correspond to different I/O combinations. This table
holds for both input as well as output bitmaps.

Digital I/O
Value

I/O
#4

I/O
#3

I/O
#2

I/O
#1

0 - - - -

1 - - - ✔

2 - - ✔

3 - - ✔ ✔

4 - ✔ - -

5 - ✔ - ✔

6 - ✔ ✔ -

7 - ✔ ✔ ✔

8 ✔ - - -

9 ✔ - - ✔

10 ✔ - ✔ -

11 ✔ - ✔ ✔

12 ✔ ✔ - -

13 ✔ ✔ - ✔

14 ✔ ✔ ✔ -

15 ✔ ✔ ✔ ✔

The command, “AutoStartTrigger=2 0“, causes the reader to enter the working state on receipt of a

rising edge on input #2, while “AutoStartTrigger=0 3“ causes the reader to enter the working state

after the receipt of a falling edge on input #1 or input #2. “AutoStartTrigger=0 0“ causes the reader

to immediately drop into the Working state.

The AutoStartPause property causes the reader to wait the specified number of milliseconds after
receiving a start trigger before transitioning to the working state.

WORKING STATE
In the working state, the reader holds the digital output lines at the value defined by the

AutoWorkOutput command. “AutoWorkOutput=3“ holds the first two output lines high while the

reader is working. The action the reader performs while in the working state is determined by the

AutoAction command. “AutoAction=Acquire“ causes the reader to repeatedly acquire TagList data

using the parameters set in the AcquireMode and PersistTime commands. The reader continues

working until the Stop Working Trigger conditions are met (see below).

STOP WORKING TRIGGER/TIMER
Like the Start Working Trigger, the Stop Working Trigger can be a change on the digital input lines, but

can also be the expiration of a timer. Use the AutoStopTrigger command with a rising, falling edge

pattern to set the trigger conditions. “AutoStopTrigger=1 0“ looks for a rising edge on input #1 before

leaving the Working state. In addition, one may use the AutoStopTimer command to repeat the

Working action for a specified period of time. For example, “AutoStopTimer=1300“ causes the reader

to perform the Working action for 1.3 seconds before moving on to the Evaluation stage. If both a stop
trigger and a stop timer are specified, whichever event occurs first stops the working state.

EVALUATION
At the Evaluation decision point, the reader looks to see if new tags have been added to the TagList since
the last evaluation. If so, it drops to the AutoTruePause state, if not, it drops to the AutoFalsePause state.

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

15

Note: the Evaluation looks at the TagList and therefore is very much dependent on the value of the
PersistTime setting.

TRUE/FALSE PAUSE

After evaluation, the Reader sets the output lines to the values specified in the AutoTrueOutput and

AutoFalseOutput commands. This condition is held for AutoTruePause or AutoFalsePause

milliseconds before the test for Notification begins. For example, “AutoTrueOutput=1“ and

“AutoTruePause=20“ cause the reader to hold output #1 high (and all others low) for 20 milliseconds

before proceeding.

NOTIFICATION

If NotifyMode is enabled (NotifyMode=On) and the specified NotifyTrigger has occurred, the reader

issues an notification message. The NotifyTrigger is specified with the “NotifyTrigger“ command and

can be set to “Add”, "Remove”, “Change”, “True”, “False”, or "TrueFalse", as described in the next topic.

If a notification is to be issued, the TagList data is sent to the NotifyAddress. The reader then returns

to the Waiting state.

AutoMode Examples

EXAMPLE 1 - BACKGROUND READING
In this case, we would like the reader to monitor the tag field continuously. The application periodically
asks for the TagList. If a new tag is seen, output #1 flashes high for 500 msec. Otherwise, output #2
flashes high for 500 msec.

AutoModeReset

AutoAction = Acquire

AutoStartTrigger = 0,0

AutoStopTimer = 0

AutoTrueOutput = 1

AutoTruePause = 500

AutoFalseOutput = 2

AutoFalsePause = 500

AutoMode = On

EXAMPLE 2 - TRIGGERED READING
Here a forklift causes an electric eye to send a signal to the reader. We want the reader to look for a
rising edge on this signal and scan for tags for 1.8 seconds before going back to the Waiting state. We
won't make any changes to the outputs.

AutoModeReset

AutoAction = Acquire

AutoStartTrigger = 1, 0

AutoStopTimer = 1800

AutoTruePause = 0

AutoFalsePause = 0

AutoMode = On

EXAMPLE 3 - TRIGGERED READING WITH NOTIFICATION
A trigger is used to start the reading. If a tag is found, send an email message. After the email is sent,
return to the waiting state.

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

16

AutoModeReset

AutoAction = Acquire

AutoStartTrigger = 1, 0

AutoStopTimer = 0

AutoTruePause = 0

AutoFalsePause = 0

NotifyAddress = borg@mycompany.com

MailServer = mail.mycompany.com

NotifyTrigger = Add

NotifyMode = On

AutoMode = On

Notification Mode

The last stage in configuring AutoMode is to tell the reader under what conditions to notify listeners about
TagLists. Listeners (network applications / people) are notified only when specific conditions arise, such
as when new tags are read, or when tags disappear from view.

NotifyTime
The NotifyTime command instructs the reader to send out a copy of its TagList to a listener every n
seconds, regardless of whether the TagList has changed or not. This is a simple way to force the reader
to send out its TagList to a listener.

NotifyTrigger
The NotifyTrigger command specifies a condition that must occur before a TagList is sent out to a
listener. There are a number of possible triggers that can be used:

Trigger Trigger Condition Tag Data Included

Add A new tag was read and added to the TagList. Only the added tags.

Remove A tag was removed from the TagList. Only the removed tags.

AddRemove
A tag was added to or removed from the
TagList

A list of added tags, then a
list or removed tags.

Change
A tag was either added to, or removed from,
the TagList.

Entire TagList.

True

The evaluation task of the autonomous state

loop evaluates to true

(typically when a tag is added to the TagList).

Entire TagList.

False

The evaluation task of the autonomous state

loop evaluates to false

(typically when no tag is added to the TagList)

Entire TagList.

TrueFalse

The evaluation task of the autonomous state

loop evaluates to true or false

(i.e. every AutoMode cycle)

Entire TagList.

NotifyAddress
The NotifyAddress is the location where the reader delivers notification messages to. The reader can be
instructed to send messages to a specific machine on the network over a TCP socket, via email to a
specific email address, or even out the serial port. This is configured using the command:

NotifyAddress = <address>

The format of <address> indicates the method of delivery:

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

17

NotifyAddress Description

hostname:port Send a message to a specified port on a networked machine. The
address takes the form “hostname:port.” For example,
“123.01.02.98:3450” or "listener.alientechnology.com:10002”

user@domain.com

Send a message via e-mail to the address specified. The address is
specified in standard email form, i.e., user@domain.com

NOTE: the MailServer parameter must be configured for this to
work. No email authentication protocols are supported at this time.

http://domain:port/path Send a message as a POST request to a web service. The address
must start with “http://”, and may optionally include the port number
(default is 80) and path to a specific web service.

SERIAL Send a message to the serial connection. The word “SERIAL” is
used as the address, and is not case sensitive.

NotifyFormat
You can tell the reader the format for any notification that it issues. When a notification message is sent
out, it contains two parts:

 The first part, the header, provides details about the reader that sent the message,
and the reason the message was sent.

 The second part is the TagList - either newly added or removed tags, or the complete
list of tags as seen by the reader, depending on the NotifyTrigger.

The format of the message is configured using a single command:

NotifyFormat = <format>

The format may be one of the following:

NotifyFormat Description

Text Plain text messages, one tag ID per line.

Terse Plain text messages, one tag ID per line, compact form

XML XML text format

Custom
Same as Text format, except the contents of each tag ID line is defined
by the TaglistCustomFormat parameter

mailto:user@domain.com

READER FUNDAMENTALS CHAPTER 2

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

18

Text-formatted notifications take the form:

#Alien RFID Reader Auto Notification Message

#ReaderName: Spinner Reader

#ReaderType: Alien RFID Tag Reader, Model: ALR-9900

 (Four Antenna / Gen 2 / 902-928 MHz)

#IPAddress: 10.1.70.13

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2003/01/21 12:48:59

#Reason: TEST MESSAGE

#StartTriggerLines: 0

#StopTriggerLines: 0

Tag:1115 F268 81C3 C012, Disc:2003/01/21 09:00:51, Last:2003/01/21 09:00:51, Count:1,

Ant:0, Proto:1

Tag:0100 0100 0002 0709, Disc:2003/01/21 11:00:10, Last:2003/01/21 11:00:10, Count:1,

Ant:0, Proto:1

#End of Notification Message

Terse-formatted notifications take the form:

#Alien RFID Reader Auto Notification Message

#ReaderName: Spinner Reader

#ReaderType: Alien RFID Tag Reader, Model: ALR-9900

 (Four Antenna / Gen 2 / 902-928 MHz)

#IPAddress: 10.1.70.13

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2003/01/21 12:48:59

#Reason: TEST MESSAGE

#StartTriggerLines: 0

#StopTriggerLines: 0

1115 F268 81C3 C012,0,1

0100 0100 0002 0709,0,1

#End of Notification Message

CHAPTER 2 READER FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

19

XML-formatted notifications take the form:
<?xml version="1.0" encoding="UTF-8"?>

<Alien-RFID-Reader-Auto-Notification>

 <ReaderName>Spinner Reader</ReaderName>

 <ReaderType>

 Alien RFID Tag Reader, Model: ALR-9900 (Four Antenna / Gen 2 / 902-928 MHz)

 </ReaderType>

 <IPAddress>10.1.70.13</IPAddress>

 <CommandPort>23</CommandPort>

 <MACAddress>00:80:66:10:11:6A</MACAddress>

 <Time>2003/01/21 12:49:22</Time>

 <Reason>TEST MESSAGE</Reason>

 <Alien-RFID-Tag-List>

 <Alien-RFID-Tag>

 <TagID>0102 0304 0506 0709</TagID>

 <DiscoveryTime>2003/01/17 11:37:01</DiscoveryTime>

 <LastSeenTime>2003/01/17 11:37:01</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>1413726</ReadCount>

 <Protocol>1</Protocol>

 </Alien-RFID-Tag>

 <Alien-RFID-Tag>

 <TagID>2283 1668 ADC3 E804</TagID>

 <DiscoveryTime>2003/01/19 07:01:19</DiscoveryTime>

 <LastSeenTime>2003/01/19 07:01:19</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>1</ReadCount>

 <Protocol>1</Protocol>

 </Alien-RFID-Tag>

 </Alien-RFID-Tag-List>

</Alien-RFID-Reader-Auto-Notification>

An example of a custom-formatted notification might be:

#Alien RFID Reader Auto Notification Message

#ReaderName: Spinner Reader

#ReaderType: Alien RFID Tag Reader, Model: ALR-9900 (Four Antenna / Gen 2 / 902-928 MHz)

#IPAddress: 10.1.70.13

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2003/01/21 12:48:59

#Reason: TEST MESSAGE

The tag 1115 F268 81C3 C012 was read 3 times

The tag 0100 0100 0002 0709 was read 1 times

#End of Notification Message

Listening for Tags over the Network

When a reader has been configured for Autonomous Mode, interactive communication with the reader is
unnecessary and it can be left to work on its own. It is then up to the application to listen for any
notification messages from the reader.

Libraries included in the RFID Reader Developer’s Kit provide this functionality in Java, .NET, and Visual
Basic environments. In both cases, setting up a listening service is a simple coding task, involving less
than ten lines of code.

TAG FUNDAMENTALS CHAPTER 3

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

20

CHAPTER 3

Tag Fundamentals

Introduction

RFID tag reading is not just about getting the tag ID from a tag into the reader. There are different
methods available to perform this basic operation, and different parameters and settings that can be
altered to tweak the performance of this basic operation.

Alien RFID Tags

Alien Tags

Alien’s offerings in the Class 1 tag
category use proprietary ICs to meet the
cost and size requirements of the
EPCglobal specification.

This is a completely “passive” tag by
both common definitions of the term in
both its means of communication
(backscatter) and its power source
(beam-powered). Thus, if you hear
Aliens refer to a “passive tag,” this is the
type of tag they are talking about.

Acquisition Modes

The AcquireMode property defines the method used to read tags in the field. There are two distinct
methods for reading tags, and the choice of one method over another depends on the application at

hand. You specify the Acquire Mode by issuing the "AcquireMode" command. It can take one of two

values, "Global Scroll" or "Inventory”.

Inventory
The inventory command is a full-featured system for discerning the IDs of multiple tags in the field at the
same time. This single high-level command transforms itself into a complex series of reader-tag
interrogations that eventually resolve themselves into a single list of tag IDs seen by the RFID Reader.
This method of interrogation and evaluation of multiple tags is known as an anti-collision search.

CLASS 1/GEN 2 INVENTORY
In a Class 1/Gen 2 inventory, the reader counts the tags in the field in a probabilistic fashion. Since it
can’t communicate with all tags at the same time, the tags respond in a somewhat random manner, which
eventually, though efficiently, scans the entire tag population. The reader tells all of the tags to roll a
random number, and the population is subdivided into a number of "bins" (determined by the "Q"
parameter). Only those tags that chose a random number in bin #1 get to talk first. The reader attempts to
decode all of the responses from the tags in bin #1, and it that group is still too large it divides the tag
population into smaller-sized bins. After the reader finishes decoding signals from this first group of tags,
it tells the rest of the tags to move down a bin, and it then talks to the next group of tags.

CHAPTER 3 TAG FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

21

Picking the starting Q parameter that is right for the expected tag population size is important in achieving
good inventory performance, but Alien readers can dynamically adjust the Q parameter as the inventory
progresses to cause more or fewer tags to respond at any given time, making the initial choice of Q value
less important.

CLASS 1/GEN 2 ACQUIRE PARAMETERS
When the reader scans for Class 1/Gen 2 tags, it can automatically prepare tags to be inventoried (called
“Selecting”), then perform a series of actions on those tags. The tag population is subdivided into "bins",
so that the reader only has to talk to a subset of the tags at any given time. This sequence is defined by
the "G2" acquire parameters; by adjusting each value you can configure the reader to perform optimally,
depending on your particular use case.

When the reader does an acquire action, it performs a total number of acquire cycles specified by the

AcqG2Cycles parameter. Each cycle starts by issuing AcqG2Select SELECT commands on each

antenna, The SELECT command causes some tags to go to the "A" (un-inventoried) state, which is

similar to “waking the tag up”. It then performs a number of complete inventories (given by AcqG2Count)

on each antenna, placing tags into the "B" state as they are read. You control which tags participate
through the use of a tag Mask.

The acquire parameters for Class 1/Gen 2 are demonstrated by the following pseudo-code:

foreach cycle in AcqG2Cycles

 foreach antenna in AntennaSequence

 SELECT (applies the current mask)

 next antenna

 foreach count in AcqG2Count

 foreach antenna in AntennaSequence

 DoAcquisition

 next antenna

 next count

next cycle

Additionally, Class 1/Gen 2 tags can be inventoried in one of four "sessions", specified by the

AcqG2Session parameter. Each tag maintains a separate "inventoried" state on each session, and once

inventoried, a tag does not respond to further reader inquiries on the same session, until it receives
another SELECT command. Tags can remain in the inventoried state even after leaving the vicinity of the
reader, for a period of time dependent on the session used.

Global Scroll
Global Scroll is the most primitive of tag ID reading operations supported by the Alien RFID Reader
system. When a global scroll command is issued, the RFID Reader sends a single command over the air
to all and any tags. That command is simply a request for any tag to immediately send back its ID to the
RFID Reader.

The simplicity of this command is both its advantage and its downfall: The command is very quick to
execute as it involves only one round trip between the reader and the tag. However, because the
command is so simple, problems may arise if there is more than one tag in the field. At this point, multiple
tags all receive the same command, and all send back their IDs to the reader at virtually the same time. A
situation such as this makes it difficult for the reader to discern individual IDs among the general noise.
Typically one or two of the loudest or closest tags is decoded, but the majority will not be discerned.

This is analogous to walking into a dark room full of people and shouting out the command “if anyone can
hear me, shout your name back now”. If there is one person in the room with you, you are able to hear
their name. If there are multiple people in the room, the results will be noise. Maybe you are able to make
out one or two names, but typically not more than that.

TAG FUNDAMENTALS CHAPTER 3

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

22

Furthermore, The Q value is not automatically adjusted during a Global Scroll inventory, and the reader
alternates between inventorying Class 1/Gen 2 tags in the “A” state and then in the “B” state, for greater
speed. For all of these reasons, Global Scroll mode is generally not recommended for the majority of
RFID situations.

Masks and Tag Memory Structure

Many commands aimed at Alien RFID tags require the setting of a mask, which directs the commands
only at the tags whose ID matches the mask. This mechanism allows commands to be sent to one
specific tag, a selective group of tags, or the whole field of tags.

To understand the use of masks, a basic understanding of tag memory structure is first required.

Class 1/Gen 2 Tag Memory
The basic size of a data entity in Class1, Gen2 is a word (16 bits), rather than a byte (8 bits). Class 1/Gen
2 tags contain up to four memory banks.

G2 Bank Description

Bank 0

RESERVED

Contains the Kill and Access passwords. Each is two words (4 bytes) in length. Tags
need not implement either of these passwords, in which case the values are taken to
be 0000 0000, and the corresponding unused memory locations need not exist.
Masking into Bank 0 is not permitted.

Bank 1

EPC

Contains one CRC word, one PC word, and a flexible number of EPC words following.
See below for detailed structure.

Bank 2

TID

Contains tag identifying information, such as the allocation class identifier (EPCglobal,
or other), manufacturer information, and tag model and versioning information.

Bank 3

USER

Unstructured scratch space for user-specific data storage. Tags need not implement
the USER bank, and the memory capacity depends on the tag implementation.

CLASS 1/GEN 2 EPC STRUCTURE
Current Class 1/Gen 2 tags generally contain 96 or 128 bits of programmable memory in the EPC
memory bank, although the specification allows for up to 496 EPC bits. In addition to the EPC code, the
EPC memory bank also contains 16 bits of CRC checksum, and 16 Protocol-Control (PC) bits.

 CRC PC EPC Code (or User ID Code)

Word 0 1 0 1 2 3 4 5 …

Bit 0-15 16-31 32-47 48-63 64-79 80-95 96-111 112-127 …

Class 1/Gen 2 Tag Memory Structure

The EPC Code is addressed from left to right, where the leftmost bit (the Most Significant Bit) is bit 32,
and extending out through the length of the EPC. There is no restriction on the data that resides in this
portion of the tag.

The checksum is automatically calculated by the tag, over the 16 bits of the PC and the entire EPC Code.
The checksum is calculated and programmed into the tag automatically by the reader.

The Protocol-Control (PC) word encodes the number of the EPC words, (bits 0-4), followed by two
reserved bits (bit 5-6), and a numbering system identifier (bits 7-15). The numbering system identifier

CHAPTER 3 TAG FUNDAMENTALS

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

23

specifies either an EPCglobal™ header (defined by the EPC™ Tag Data Standards) or an Application
Family Identifier (defined by ISO/IEC 15961).

For further details on programming tag IDs and tag memory, please see the Tag Programming chapter.

Addressing a Subset of Tags
One of the more useful applications of the mask command is to address a subset of tags in the field. This
is achieved using masks.

For example, the following mask command can be issued to address only tag IDs that start with the
numbers "8000" :

AcqG2Mask = 1, 32, 16, 80 00

The first value is the bank (EPC is in bank #1). The second value is the location within the bank where
you want to start matching data with the tag (the actual EPC starts at bit #32). The third value is the
number of bits in the mask (you might want a length less than 8 bits). Finally, a sequence of hex bytes is
given specifying the mask – 80 00.

Subsequent commands that use a mask will now only be recognized by tags that start with this tag ID.
This can be useful if, for example, the reader is scanning food items but is only interested in finding a
certain brand of breakfast cereal. By setting the mask to identify only the breakfast cereal tag IDs, any
acquire command on the food items only returns the items of interest. This methodology works
particularly well when combined with the EPC code strategy, where each product type and manufacturer
code use well-defined memory codes that can be masked.

Another example is to search for all tags whose last three bits of a 96-bit EPC code are set to 1. The
mask settings for this would be:

AcqG2Mask = 1, 125, 3, E0

In other words, masking in bank #1 again, and since the 96-bit EPC starts at bit #32, then the last three
bits will start at bit #125 (32+96-3). The length is 3 bits, and we want to match a data value of E0hex. The
mask value is specified as E0hex (11100000binary) and not 07hex (111binary) because 07hex is interpreted as
00000111binary, and when the bit pattern is applied as a mask, the bits are applied from left to right (most-
significant-bit to least-significant-bit).

The masking operation is done as part of the SELECT portion of the Class 1/Gen 2 over-the-air
transaction, so you must have AcqG2Select set to a value larger than 0. If AcqG2Select=0, then no
SELECT commands are issued to the tags during an inventory, and the mask will have no effect.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

24

CHAPTER 4

Alien Reader Protocol

The Alien Reader Protocol (ARP) is a text-based communications protocol for configuring and operating
an Alien RFID Reader. This chapter describes the programming interface that links the Alien RFID
Reader to the outside world.

For an overview of the reader system and instructions on setting up reader operation via a host computer,
see the chapters entitled: Reader Fundamentals and Tag Fundamentals.

Some Alien readers support the EPCglobal Low Level Reader Protocol (LLRP), which is an alternative to
ARP. Refer to chapter 6 for more information about LLRP.

Reader Operation Overview

As detailed in the previous chapter, you may interact with the reader and configure its operation using
either of two text-based command line methods:

 direct serial (RS-232) – if supported by the reader

 telnet connection (TCP/IP)

For the purposes of these instructions, the serial and telnet operations are considered essentially
identical. In both cases, the screens look similar and are considered identical for the purposes of the
instructions that follow.

Telnet Exceptions:

 In telnet operation you must issue the command “q” to quit the session.

 Accessing the reader via telnet requires an authorized user name and password
(both of which can be changed with commands in the General command set).

Telnet connection

Direct serial connection
via HyperTerminal

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

25

Overview of Commands

There are two distinct categories of reader activities: those initiated by the host (Interactive Mode), and
those initiated by the reader itself (Autonomous Mode).

INTERACTIVE MODE
Interactive Mode activities are initiated by a program or user who issues commands to the reader from a
separate host computer. The host always initiates the transaction with a request, and the reader responds
with an immediate reply. The host should wait for a reply before initiating another command.

Interactive commands are used to configure and operate the reader, as well as to interrogate tags and
retrieve the stored TagList on demand.

AUTONOMOUS MODE
AutoMode activities instruct the reader to perform certain tasks without outside intervention, according to
conditions set by the programmer.

These commands typically tell the reader to read tags based on trigger events (external digital inputs or
internal timers) and then send notification messages to a host system, depending on various TagList-
based triggers. For example, the reader can be instructed to search the field until it sees a tag, then to
read the new tag and e-mail the event to a specified e-mail address.

Command Format
All commands between the host system and the reader are human readable, ASCII text-based
messages. To get the value of a particular attribute, use:

<attribute>?

To set the value of a particular attribute, use:

<attribute> = <value>

For example, a command to set the name of the reader using the "ReaderName" command takes the
form:

Alien>ReaderName = My Alien Reader[CR][LF]

All commands to the reader are single-line ASCII strings, terminated by a carriage-return / line-feed pair,
written as [CR][LF]. The [CR] character is ASCII code 0x0D, while the [LF] character is ASCII code 0x0A.
These characters are sometimes written as "\r" and "\n" respectively.

All responses from the reader are either single-line or multi-line ASCII strings, terminated by [CR][LF][0],
where [0] is ASCII code 0x00. When a responses is comprised of multiple text lines, each line is
separated by a single [CR][LF] sequence.

An example of a command and single-line response is:

Alien>ReaderName?[CR][LF]

ReaderName = Alien Reader[CR][LF][0]

An example of a command and multi-line response is:

Alien>t[CR][LF]

Tag:BEEF 0909 0909 0909, Disc:2008/08/12 ... Count:1, Ant:0, Proto:2[CR][LF]

Tag:DEAD BEEF CAFE 8042, Disc:2008/08/12 ... Count:1, Ant:0, Proto:2[CR][LF]

Tag:DEAD BEEF CAFE 8043, Disc:2008/08/12 ... Count:1, Ant:0, Proto:2[CR][LF][0]

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

26

Commands are not case sensitive:

 “readername?” is equivalent to "ReADerNaME?”.

Suppressing Command Prompts
By default, the reader responds to all commands using the interactive console-style interface.
Consequently replies are always followed by a command prompt indicating that the reader is ready for
more user input. Often, the command prompt is not required, especially when client software is written
that programmatically communicates with the reader.

Since the command prompt is sent after the null-terminated response, this prompt text might be
interpreted as the beginning of the next reader response. To accommodate this, command prompts can
be suppressed by prepending a 0x01 character, written as [1], to the command string. For example:

INTERACTIVE COMMAND FORMAT
Alien>ReaderName?[CR][LF]

ReaderName = Alien Reader[CR][LF][0]

[CR][LF]Alien>

NON-INTERACTIVE COMMAND FORMAT
[1]ReaderName?[CR][LF]

ReaderName = Alien Reader[CR][LF][0]

"Get" and "Set" Compatibility
Older versions of the Alien Reader Protocol insisted that you type "get <attribute>" and "set <attribute> =
<value>" when getting and setting values, rather than the more convenient "<attribute>?" and "<attribute>
= <value>". In order to be backward compatible with systems that still communicate with readers using
this older syntax, the reader still accepts that formatting.

Older Syntax Standard Syntax

Get <attributeName> <attributeName>?

Set <attributeName> = <attributeValue> <attributeName> = <attributeValue>

Examples:

Alien>get ReaderName

ReaderName = Alien RFID Reader

Alien>ReaderName?

ReaderName = Alien RFID Reader

Alien>set ReaderName = Alice

ReaderName = Alice

Alien>ReaderName = Alice

ReaderName = Alice

Command History Buffer, and "!"
The reader remembers the last ten commands that you have entered, and you can scroll through the
command history by typing the up- or down-arrow keys. The up-arrow cycles through progressively older
commands, while the down-arrow cycles back to the more recent commands.

When a command is retrieved from the history buffer, the cursor is positioned at the end of the line, so
you can easily edit the command or just press [ENTER] to send it. This is helpful if you mistype
something, or just want to enter another command similar to the previous one.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

27

The "!" command repeats the last command entered. It can also be used to re-set a property with a new
value. For instance, after entering "ReaderName=Bob", you could then type "! = Larry" to set the
ReaderName to Larry.

XML Messages
There are a few cases where text-based replies and messages are formatted in XML format for easier
computer parsing. Complete Document Type Definitions (DTDs) for each XML document are provided in
this document as an appendix, as well as on the Developer's Kit CD.

The following messages are sent in XML format:

 Heartbeat Messages

 Notification Messages (if NotifyFormat = XML)

 The "get TagList" commands (if TagListFormat = XML)

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

28

Command List

GENERAL COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

Help ("h") List all reader commands available. ✔ ✔ ✔ ✔

Info ("i") List all current reader settings. ✔ ✔ ✔ ✔

! (exclamation mark) Repeat the last command issued. ✔ ✔ ✔ ✔

Save Save current settings to flash memory ✔ ✔ ✔ ✔

Quit ("q") Quit session (telnet only) ✔ ✔ ✔ ✔

Function
Used to enable and disable classes of commands
(programming, for example)

✔ ✔ ✔ ✔

ReaderName An arbitrary name to be associated with the reader. ✔ ✔ ✔ ✔

ReaderType A description of the reader type. ✔ ✔ ✔ ✔

ReaderVersion Reader software/hardware versions. ✔ ✔ ✔ ✔

DSPVersion DSP firmware version and configuration. ✔ ✔ ✔ ✔

ReaderNumber
An arbitrary number (1-255) to be associated with the
reader.

✔ ✔ ✔ ✔

BaudRate The serial interface baud rate. ✔ ✔ ✔ ✔

Uptime
Number of seconds that have elapsed since the
reader was last booted.

✔ ✔ ✔ ✔

Username
The Username used for the Network based access
control.

✔ ✔ ✔ ✔

Password
The Password used for the Network based access
control.

✔ ✔ ✔ ✔

MaxAntenna
The maximum addressable antenna port number
(total number of antennas is MaxAntenna+1)

✔ ✔ ✔ ✔

AntennaSequence ("ant") The antenna port sequence the reader will use. ✔ ✔ ✔ ✔

RFAttenuation
The amount of digital attenuation to apply to the
emitted RF.

✔ ✔ ✔ ✔

RFLevel
The output power.
(RFLevel = <maxPower> – <RFAttenuation>

✔ ✔ ✔ ✔

RFModulation The Class1/Gen2 modulation scheme. ✔ ✔ ✔ ✔

FactorySettings Reset the reader to its original factory settings. ✔ ✔ ✔ ✔

Reboot Reboot the reader. ✔ ✔ ✔ ✔

Service
View status, start/stop, and control auto-starting of
auxiliary services.

✔ ✔ ✔ ✔

ETSIMode
Switch the regulatory modes between EN 300 220
and EN 302 208 v1.3.1

 ✔

MyData A general scratch-pad for your personal data. ✔ ✔ ✔ ✔

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

29

NETWORK COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

MACAddress The Reader's MAC address – unique to every reader. ✔ ✔ ✔ ✔

DHCP
If DHCP is on, the reader automatically configures its
IPV4 network settings on power-up.

✔ ✔ ✔ ✔

DHCPTimeout
Number of seconds the reader should wait for a reply
from a DHCP server.

✔ ✔ ✔ ✔

IPAddress The IPV4 address of the reader. ✔ ✔ ✔ ✔

Netmask The IPV4 subnet mask. ✔ ✔ ✔ ✔

Gateway The IPV4 Gateway. ✔ ✔ ✔ ✔

DHCP6
If DHCP6 is on, the reader automatically configures its
IPV6 network settings on power-up.

✔

IPAddress6 The IPV6 address of the reader. ✔

Netmask6 The IPV6 subnet mask. ✔

Gateway6 The IPV6 Gateway. ✔

DNS The network Domain Name Server. ✔ ✔ ✔ ✔

Hostname The network hostname. May be overridden by DHCP. ✔ ✔ ✔ ✔

UpgradeAddress The address where firmware updates may be found. ✔ ✔ ✔ ✔

NetworkUpgrade Enables automatic network firmware upgrades. ✔ ✔ ✔ ✔

UpgradeNow Triggers a reader firmware update. ✔ ✔ ✔ ✔

NetworkTimeout The time before the reader closes a stale socket. ✔ ✔ ✔ ✔

CommandPort The network port # for the reader's command channel. ✔ ✔ ✔ ✔

CommandPortLocal The network port # for the reader's local cmd channel. ✔ ✔ ✔ ✔

AcceptConnections Controls if reader accepts external TCP connections. ✔ ✔ ✔ ✔

Ping Tests a network connection to another device. ✔ ✔ ✔ ✔

HeartbeatAddress The IP address to deliver heartbeat messages to. ✔ ✔ ✔ ✔

HeartbeatPort The port # where heartbeat messages are directed. ✔ ✔ ✔ ✔

HeartbeatTime The number of seconds between each heartbeat. ✔ ✔ ✔ ✔

HeartbeatCount The total number of heartbeats to send after booting. ✔ ✔ ✔ ✔

HeartbeatNow Triggers an immediate heartbeat message. ✔ ✔ ✔ ✔

WWWPort The reader's web server port number. ✔ ✔ ✔ ✔

HostLog Get the log dump of recent host activity. ✔ ✔ ✔ ✔

DebugHost Controls logging of all host-issued reader commands. ✔ ✔ ✔ ✔

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

30

TIME COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

TimeServer The address of a network time server. ✔ ✔ ✔ ✔

TimeZone The time zone offset from UTC for the reader's clock. ✔ ✔ ✔ ✔

Time The time on the reader's clock. ✔ ✔ ✔ ✔

MACRO COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

MacroList Displays the names of all installed macros. ✔ ✔ ✔ ✔

MacroView <macro> Displays the contents of the named macro. ✔ ✔ ✔ ✔

MacroRun <macro> Executes the commands in the named macro. ✔ ✔ ✔ ✔

MacroDel <macro> Permanently removes the named macro. ✔ ✔ ✔ ✔

MacroDelAll Permanently removes all installed macros. ✔ ✔ ✔ ✔

MacroStartRec <macro> Creates and start recording a new macro ✔ ✔ ✔ ✔

MacroStopRec Halts macro recording. ✔ ✔ ✔ ✔

MacroCopy <m1> <m2> Makes a copy of a macro ✔

TAGLIST COMMANDS

Command Description

F
8
0
0

9
9
0
0

+

9
6
8
0

9
6
5
0

get TagList ("t") Perform an inventory and return the current TagList ✔ ✔ ✔ ✔

to
Performs an inventory, and also executes AcqG2Ops,
regardless of the current AcqG2OpsMode setting.

✔ ✔

PersistTime The persistence time for tags in the TagList. ✔ ✔ ✔ ✔

TagListFormat The output format for TagLists. ✔ ✔ ✔ ✔

TagListAntennaCombine
Indicates whether to combine tag reads from different
antennas into one TagList entry.

✔ ✔ ✔ ✔

TagListCustomFormat The custom TagList formatting string. ✔ ✔ ✔ ✔

TagDataFormatGroupSize
The size, in bytes, of data groups in a formatted
TagList.

✔ ✔ ✔ ✔

TagListMillis Displays milliseconds in the TagList timestamps. ✔ ✔ ✔ ✔

Clear TagList Clear the list of active tags on the reader. ✔ ✔ ✔ ✔

TagStreamMode Turn Tag Streaming On and Off. ✔ ✔ ✔ ✔

TagStreamAddress The address (IP:port or "Serial") for streaming Tags. ✔ ✔ ✔ ✔

TagStreamFormat The format of the TagStream. ✔ ✔ ✔ ✔

TagStreamCustomFormat The custom TagStream formatting string. ✔ ✔ ✔ ✔

TagStreamKeepAliveTime The time (sec) to keep an idle TagStream socket open ✔ ✔ ✔ ✔

TagStreamCountFilter Limits amount of streamed tag data. ✔ ✔ ✔ ✔

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

31

TagStreamServer
Streams tag data to any TCP socket that has made a
connection to the reader’s TagStreamServer port.

✔

StreamHeader
Enables a reader-identifying header when opening a
TagStream or IOStream socket.

✔ ✔ ✔ ✔

ACQUIRE COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

AcquireMode The inventory mode used to reads tags. ✔ ✔ ✔ ✔

AcqG2Cycles
Number of acquisition cycles to perform during each
Gen2 tag inventory.

✔ ✔ ✔ ✔

AcqG2Count
Number of reads to perform in each Gen2 inventory
cycle.

✔ ✔ ✔ ✔

AcqG2Q Starting "Q" value to use in each Gen2 inventory. ✔ ✔ ✔ ✔

AcqG2QMax Maximum value of Q parameter during Gen 2 reads. ✔ ✔ ✔ ✔

AcqG2Select
How many times a B->A Select is issued at the start of
a Gen2 inventory.

✔ ✔ ✔ ✔

AcqG2Session The G2 Session to use when inventorying tags. ✔ ✔ ✔ ✔

TagType Specifies which tag types to look for. ✔ ✔ ✔ ✔

G2Wake
Issue a Class1/Gen2 Select command to force tags
into the un-inventoried state.

✔ ✔

AcqG2Mask The Class1/Gen2 mask. Any memory bank. ✔ ✔ ✔ ✔

AcqG2MaskAction
Whether the AcqG2Mask includes or excludes
matching tags.

✔ ✔ ✔ ✔

AcqG2MaskAntenna The bitmap of antennas where the G2 mask applies. ✔ ✔

AcqG2SL
Controls whether the G2 SL flag is used during
inventories.

✔ ✔

AcqG2AccessPwd
The Access password used to operate on password-
protected Gen2 tags.

✔ ✔ ✔ ✔

AcqG2TagData
Specify additional Class1/Gen2 tag data blocks to
retrieve for the TagList.

✔ ✔

AcqG2Target Set the Class1/Gen2 inventory target (A, B, A<->B) ✔ ✔ ✔ ✔

AcqG2AntennaCombine
Controls how the Gen2 SELECT command is issued
during the inventory cycle

✔ ✔

AcqG2Ops
Set additional C1G2 tag operations, to be performed
during a G2Ops tag inventory.

✔ ✔

AcqG2OpsMode Enables AcqG2Ops operations in all inventories. ✔ ✔

AcqTime Limits duration of the inventory ✔ ✔

SpeedFilter Filters out tags based on their speed and direction. ✔ ✔

RSSIFilter Filters out tags based on their RF signal strength. ✔ ✔ ✔ ✔

TagAuth Alien Dynamic tag Authentication filter ✔ ✔

+ = ALR-9900+ only

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

32

I/O COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

ExternalInput Gets the External Input values. ✔ ✔ ✔ ✔

ExternalOutput Gets and sets the External Output values. ✔ ✔ ✔ ✔

InvertExternalInput
Turn On or Off the inversion of the External Inputs.
When inverted, driving an input voltage high indicates
low.

✔ ✔ ✔ ✔

InvertExternalOutput
Turn On or Off the inversion of the External Outputs.
When inverted, setting an output high drives its
voltage low.

✔ ✔ ✔ ✔

InitExternalOutput
The External Output state the apply during and after
the reader boots.

✔ ✔ ✔ ✔

ExternalInputDebounce Debounce spurious signals on the External Output. ✔

IOList ("ios") Get a formatted list of I/O events. ✔ ✔ ✔ ✔

Clear IOList Clears all I/O events from the IOList. ✔ ✔ ✔ ✔

IOType The type of I/O events to track. ✔ ✔ ✔ ✔

IOListFormat The format of the IOList. ✔ ✔ ✔ ✔

IOListCustomFormat The custom IOList formatting string. ✔ ✔ ✔ ✔

IOPersistTime The persistence time for IO events in the IOList. ✔ ✔ ✔ ✔

IOStreamMode Turns I/O Streaming On and Off. ✔ ✔ ✔ ✔

IOStreamAddress
The address (IP:port or "Serial") for streaming I/O
events.

✔ ✔ ✔ ✔

IOStreamFormat The format of the I/O Stream. ✔ ✔ ✔ ✔

IOStreamCustomFormat The custom I/O Stream formatting string. ✔ ✔ ✔ ✔

IOStreamKeepAliveTime
Number of seconds to keep an idle IOStream socket
open.

✔ ✔ ✔ ✔

BlinkLED Blinks the reader's status LEDs in a user-defined way. ✔ ✔ ✔ ✔

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

33

AUTOMODE COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

AutoMode Switch auto mode on and off. ✔ ✔ ✔ ✔

AutoWaitOutput The value of the outputs while in the wait state. ✔ ✔ ✔ ✔

AutoStartTrigger The input trigger that starts the AutoAction. ✔ ✔ ✔ ✔

AutoStartPause
Milliseconds after receiving a start trigger before
starting the AutoAction

✔ ✔ ✔ ✔

AutoWorkOutput The value of the outputs while in the work state. ✔ ✔ ✔ ✔

AutoAction The action to perform in AutoMode's work state. ✔ ✔ ✔ ✔

AutoStopTrigger The input trigger that stops the AutoAction. ✔ ✔ ✔ ✔

AutoStopTimer Milliseconds to perform the AutoAction. ✔ ✔ ✔ ✔

AutoStopPause
Milliseconds after receiving a stop trigger before
stopping the AutoAction.

✔ ✔ ✔ ✔

AutoTrueOutput
The value of the outputs when AutoMode evaluates to
True.

✔ ✔ ✔ ✔

AutoTruePause
Milliseconds to pause after AutoMode evaluates to
True.

✔ ✔ ✔ ✔

AutoFalseOutput
The value of the outputs when AutoMode evaluates to
False.

✔ ✔ ✔ ✔

AutoFalsePause
Milliseconds to pause after AutoMode evaluates to
False.

✔ ✔ ✔ ✔

AutoErrorOutput
The error-dependent value of the outputs when
AutoMode evaluates to False.

✔ ✔

AutoProgError
Set the error code to report when AutoMode
programming action fails.

✔ ✔

AutoModeTriggerNow Force an AutoStartTrigger event to occur. ✔ ✔ ✔ ✔

AutoModeReset Reset all AutoMode values to their default states. ✔ ✔ ✔ ✔

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

34

NOTIFY COMMANDS

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

NotifyMode Switches notify mode On and Off. ✔ ✔ ✔ ✔

NotifyFormat The format for TagList notification messages. ✔ ✔ ✔ ✔

NotifyHeader
Turns On and Off the additional header (and footer)
lines in notification messages.

✔ ✔ ✔ ✔

NotifyAddress The address to push TagList notifications to. ✔ ✔ ✔ ✔

NotifyTime
Number of seconds between timer-triggered
notification messages.

✔ ✔ ✔ ✔

NotifyTrigger The AutoMode-generated trigger for pushing TagLists. ✔ ✔ ✔ ✔

NotifyKeepAliveTime Time (sec) to keep an idle notification socket open. ✔ ✔ ✔ ✔

MailServer The SMTP mail server for e-mail notifications. ✔ ✔ ✔ ✔

MailFrom The email address identifier of the RFID Reader. ✔ ✔ ✔ ✔

NotifyRetryCount
The number of times a failed socket notification
attempt is repeated.

✔ ✔ ✔ ✔

NotifyRetryPause Number of seconds between failed notification retries. ✔ ✔ ✔ ✔

NotifyQueueLimit
Number of failed notifications to queue for later
delivery.

✔ ✔ ✔ ✔

NotifyInclude
Whether notifications should include Tag data, I/O
event data, or both.

✔ ✔ ✔ ✔

NotifyNow Forces a message via the notification system. ✔ ✔ ✔ ✔

Commands related to programming tag memory are covered in their entirety in a later chapter.

The following sections describe each command category - detailing each command, its use and the
response formats.

NOTE: RFID Reader commands are not case sensitive, that is, you can use upper or lower case, or any
combination thereof, and the reader will understand the command. Capitalization of commands is used in
this document and in actual command responses solely for the purpose of readability.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

35

General Commands

General commands cover basic reader, antenna functions and help & information.

Help (h)
F800 | 9900 | 9680 | 9650

This command lists all reader commands available, categorized by function. You may also enter a
command name as an argument to the Help command, and receive help text for just that command.

 The command "h" is a shortcut for the "Help" command.

Help Examples
Command

Response

>help

**

GENERAL COMMANDS

**

 Help:

 Display descriptive help text.

 Info:

 Display current settings.

 !:

 Repeat last command.

 Save:

 Save current settings to permanent storage.

...

Command

Response

// Help for single command

>h NotifyNow

NotifyNow:

 Manually trigger NotifyMode.

Info (i)
F800 | 9900 | 9680 | 9650

This provides a list of current reader settings. Reader settings are categorized by function.

 The command "i" is a shortcut for the "Info" command.

You may also enter a command group name as an argument to the Info command, in order to just see
the current settings belonging to that group. Group names appear surrounded by rows of asterisks in the
Help and Info dumps.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

36

Info Examples
Command

Response

>Info

**

GENERAL COMMANDS

**

 Function = Reader

 ReaderName = Alien RFID Reader

 ReaderType = Alien RFID Tag Reader, Model: ALR-9800...

 ReaderVersion = 07.01.10.00

 DSPVersion = DSP:02.01.05 reader:05 country:01 radio:32 board:01

 ReaderNumber = 255

...

Command

Response

// Info for a single command group

>i network

**

NETWORK COMMANDS

**

 MACAddress = 00:80:66:10:11:6A

 DHCP = ON

 IPAddress = 10.10.82.72

 Hostname = fubar

 UpgradeAddress = 0.0.0.0

 NetworkUpgrade = OFF

...

!
F800 | 9900 | 9680 | 9650

This command (exclamation mark) asks the reader to repeat the last command issued.

! Example

Command

Response

>Program Tag = DE AD BE EF CA FE B0 B0

Error 134: No Tag Found.

>!

Program Tag = Success!

You can also repeat a previous "set" command with a new value using the "! =" shortcut. If the previous
command wasn't a "set" command, the reader responds with a Malformed Message error.

"! =" Example

Command

Response

Command

Response

>ExternalOutput = 0

ExternalOutput = 0

>! = 1

ExternalOutput = 1

Command

Response

Command

Response

>ReaderName?

ReaderName = myAlienReader

>! = yourAlienReader

Error: Malformed Message

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

37

Save
F800 | 9900 | 9680 | 9650

The Save command writes the current settings to flash memory. This ensures that if the reader loses
power it restarts in the same state.

The ALR-F800 reader allows you to save the current settings to a named file. The resulting profile
appears as a reader Macro, with all of the reader commands required to restore the reader to the saved
state. Just use “Save <macroName>” and a new reader macro with that name will be available.

Save Examples

Command

Response

>Save

All settings have been saved to flash!

Command

Response

Command

Response

Command

Response

// ALR-F800 Only

>Save mySettings

Settings saved to profile "mySettings".

>MacroList

example1

example2

example3

mySettings

>MacroView mySettings

GENERAL SETTINGS

ReaderName = Alien RFID Reader

ReaderNumber = 255

BaudRate = 115200

... etc...

Quit (q)
F800 | 9900 | 9680 | 9650

 (For Telnet operation only) The Quit command allows you to exit the current Telnet session.

 The command "q" is a shortcut for the "Quit" command.

Function
F800 | 9900 | 9680 | 9650

The Function command is supported for backward-compatibility with older reader models. In older
readers, the programming functions (program, lock, erase, kill, etc.) had to first be enabled by changing
the Function property from "Reader" to "Programmer". Current readers always have programming
functionality enabled, so this command is no longer required.

 Allowed Values: "Reader" | "Programmer"

 Default Value: "Reader"

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

38

Function Examples

Command

Response

> Function?

Function = Reader

Command

Response

>Function = Programmer

Function = Programmer

ReaderName
F800 | 9900 | 9680 | 9650

The reader can be assigned an arbitrary text name to aid identification in multiple-reader environments.
This name can be retrieved and changed at any time throughout reader operation.

 Allowed Values: String[1-254]

 Default Value: "Alien RFID Reader"

ReaderName Examples

Command

Response

>ReaderName?

ReaderName = My First Alien Reader

Command

Response

>ReaderName = My Second Alien Reader

ReaderName = My Second Alien Reader

ReaderType
F800 | 9900 | 9680 | 9650

The reader type can be retrieved using this command. The resulting text is a single-line reply describing
the model number of the reader and related information.

ReaderType Example

Command

Response

>ReaderType?

ReaderType = Alien RFID Tag Reader, Model: ALR-F800

Command

Response

>ReaderType?

ReaderType = Alien RFID Tag Reader, Model: ALR-9900 (Four Antenna /

Gen 2 / 902-928 MHz)

Command

Response

>ReaderType?

ReaderType = Alien RFID Tag Reader, Model: ALR-9650 (One Antenna /

Gen 2 / 902-928 MHz)

ReaderVersion
F800 | 9900 | 9680 | 9650

The reader version can be retrieved using this command. The resulting text is a multi-line reply. Each line
of the reply describes the version number of a major reader component, as well as some additional
locality information.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

39

ReaderVersion Example

Command

Response

>ReaderVersion?

ReaderVersion = 06.06.18.00

DSPVersion
F800 | 9900 | 9680 | 9650

The DSP version can be retrieved using this command. It also displays configuration and locality
information that may be useful to Alien Support in troubleshooting matters.

DSPVersion Examples

Command

Response

// ALR-9900

>DSPVersion?

DSPVersion = DSP:04.06.01 reader:08 country:01 radio:35 board:04

FPGA:09.03.17.00

Command

Response

// ALR-9680 & 9650

>DSPVersion?

DSPVersion = DSP:02.003.032-01.003.000 reader:09 country:01

radio:12 board:20

ReaderNumber
F800 | 9900 | 9680 | 9650

The reader can be assigned an arbitrary number to aid identification in multiple-reader environments. This
number can be retrieved and changed at any time throughout reader operation.

 Allowed Values: Integer(1..255)

 Default Value: 255

ReaderNumber Examples

Command

Response

>ReaderNumber?

ReaderNumber = 255

Command

Response

>ReaderNumber = 15

ReaderNumber = 15

BaudRate
F800 | 9900 | 9680 | 9650

The serial interface to the reader normally operates at 115,200 baud. This is the highest data rate that is
standard with most serial port implementations. The reader's serial baud rate can be changed to one of
four slower rates, in order to accommodate legacy equipment.

 Allowed Values: 9600 | 19200 | 38400 | 57600 | 115200

 Default Value: 115200

 The values 0..4 are also accepted, in order to remain backward compatible with older
reader models.

 0 = 115,200 baud
 1 = 57,600 baud
 2 = 38,400 baud
 3 = 19,200 baud
 4 = 9,600 baud

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

40

 Changes do not take effect immediately - the reader must be rebooted in order for
the BaudRate change to take effect.

 The baud rate only affects the reader command interface. If you should happen to
stop the serial service, the resulting Linux shell login will be at 115,200 baud. If you
completely release a serial port (for use in your custom applications), then you
control the baud rate yourself.

BaudRate Examples

Command

Response

>BaudRate = 19200

BaudRate = 19200

Uptime
F800 | 9900 | 9680 | 9650

The Uptime command returns the elapsed time, in seconds, since the last time the reader was rebooted.

Uptime Example

Command

Response

>Uptime?

Uptime = 702048

Username
F800 | 9900 | 9680 | 9650

The reader can be operated over the network. When operated in this mode it uses a simple
username/password authentication scheme to stop unwelcome visitors accessing it. This command
allows you to obtain the current username.

 A username/password pair is not required when operating the reader via serial
connection.

 The username is case sensitive.

 The ALR-F800 supports two users: “alien” and “guest”. When logged in as the guest
user, many sensitive reader commands (such as the network and firmware upgrade
commands) are not available.

 ALR-9900/9650/9680 readers only have one user, but you can change the name of
that user.

Username Examples

Command

Response

>Username?

Username = alien

Command

Response

>Username = hal

Username = hal

Password
F800 | 9900 | 9680 | 9650

The reader can be operated over the network. When operated in this mode it uses a simple
username/password authentication scheme to stop unwelcome visitors accessing it. This command
allows the password to be defined and obtained.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

41

 Allowed Values: String[1-80]

 Default Value: "password"

 A username/password pair is not required over a serial connection.

 The password is case sensitive, and should only contain visible ASCII characters.

 ALR-F800 readers do not allow you to view the current password, for security
reasons.

Password Examples

Command

Response

>Password?

Password = password

Command

Response

>Password = 1234fab

Password = 1234fab

MaxAntenna
F800 | 9900 | 9680 | 9650

To determine the maximum addressable antenna port of the reader, use the MaxAntenna command.

Antenna ports are numbered starting at zero, so the actual number of ports is one more than the
MaxAntenna value. A reader with four antenna ports returns a MaxAntenna of 3. Similarly, a reader with
only two antenna ports returns a MaxAntenna of 1.

MaxAntenna Example

Command

Response

>MaxAntenna?

MaxAntenna = 3

AntennaSequence (ant)
F800 | 9900 | 9680 | 9650

The reader can support the use of multiple antennas. This command allows you to select the antennas to
use and in what sequence. You may also choose to specify a single antenna in the AntennaSequence.

When performing inventory commands, the reader cycles through the list of antennas in the order
specified in the AntennaSequence.

 Allowed Values (reader model dependent): 0..MaxAntenna or,

if the reader supports MUX antenna multiplexor (e.g. ALR-F800), 0..MaxAntenna

(reader antennas) and/or 10-17, 20-27, 30-37, 40-47 (multiplexor antennas

attached to the reader antenna ports 0-3 respectively)

 Default Value: 0

 The command "ant" is a shortcut for the "AntennaSequence" command.

 The antenna sequence may include 1 to 8 antenna values (1 to 32 if the reader
supports antenna multiplexor). Antennas may be listed multiple times, to make the
reader to spend more time on those antennas.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

42

Mono-Static AntennaSequence Examples

Command

Response

>AntennaSequence?

AntennaSequence = 0

Command

Response

// always use antenna 1:

>AntennaSequence = 1

AntennaSequence = 1

Command

Response

// cycle between antenna 0 and antenna 1:

>AntennaSequence = 0 1

AntennaSequence = 0 1

Command

Response

// weight antenna 0 more than antenna 1:

>AntennaSequence = 0 0 0 1

AntennaSequence = 0 0 0 1

Command

Response

// use all 8 antennas of MUX connected to ALR-F800 port ANT0:

>AntennaSequence = 10 11 12 13 14 15 16 17

AntennaSequence = 10 11 12 13 14 15 16 17

Command

Response

// use antenna 0 connected to ALR-F800 port ANT0 and

// all 8 antennas of MUX connected to port ANT1:

>AntennaSequence = 0 20 21 22 23 24 25 26 27

AntennaSequence = 0 20 21 22 23 24 25 26 27

RFAttenuation
F800 | 9900 | 9680 | 9650

Alien RFID readers output up to 1 watt of RF power at each antenna. While this power is sufficient to
provide good penetration and range, these attributes are not always desirable. If multiple readers are in
the same vicinity, their signals may interfere with each other. Also, in situations where tagged products
are close together, but only one product should be read at a time (a conveyor belt, for example), then
penetrating power and long range are your enemies.

Attenuating RF reduces its power, and there are two ways to do this. The first method involves placing
attenuators inline in the antenna cable. This method is quick but is not flexible and, more importantly,
reduces both the emitted RF power as well as the return signal from the tag, which is already very weak.
This would impair the reader's ability to detect tags.

The second method uses software-controlled digital attenuation, built into Alien readers. Using the
software-controlled digital attenuation reduces the emitted power but not the return signal. The
RFAttenuation value ranges from 0 (no attenuation, maximum power) up to maxAttenuation (maximum
attenuation, minimum power), in increments of 10 - each "decade" representing an additional 1 dB of RF
attenuation.

The command could be used in either of the following variations:

1. RFAttenuation = <attenuation>

This command sets the same attenuation for all antennas.

2. RFAttenuation = <antenna> <attenuation>

This command sets attenuation for each antenna individually.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

43

3. RFAttenuation = <antenna> <readattenuation> <writeattenuation>

<antenna> is the antenna number.

<readattenuation> is the RF attenuation to use when reading tags as well as when

 reading/singulating tags during programming.

<writeattenuation> is the RF attenuation to use when writing to the tag.

This command sets RF attenuations for read-power-during-programming and write-power-during-
programming to better control the programming environment. RF attenuations are specified for
each antenna independently.

For example, to keep the program zone small you could read/singulate tags at low power (high
RF attenuation) but, once the tag is singulated, use full power (no RF attenuation) to write to the
tag. This ensures there is always enough power to complete the write operation.

NOTE: This variation of the RFAttenuation command is not available on the ALR-9680

and ALR-9650.

The value of the <attenuation> parameter is as follows:

 Allowed Values: 0..150 (may depend on locality)

 Default Value: 0 (10 for ALR-9680 & 9650)

 maxAttenuation depends on how the reader's radio has been calibrated, but is
generally 150 (corresponding to 15 dB).

 Increasing RFAttenuation by 10 reduces RF power by 1 dBm.

 The RFAttenuation value applies to all antennas, unless the command is used with
an optional antenna argument. See examples below.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

44

RFAttenuation Examples
Command

Response

>RFAttenuation?

RFAttenuation = 0

Command

Response

// To reduce power by 3 dB:

>RFAttenuation = 30

RFAttenuation = 30

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Set attenuation for only antenna 0

>RFAttenuation = 0 30

RFAttenuation = 30

// Compare attenuation of ant 0 with ant 1

>RFAttenuation 0?

RFAttenuation = 30

>RFAttenuation 1?

RFAttenuation = 0

// get RFAttenuation (without antenna) always gives ant 0 value

>RFAttenuation?

RFAttenuation = 30

// read/singulate tags at low power (attenuation of 100 or 10 dB)

// and program at high power (0 dB attenuation)

>RFAttenuation = 0 100 0

RFAttenuation = 0 100 0

RFLevel
F800 | 9900 | 9680 | 9650

Rather than setting the RFAttenuation (amount of power reduced from full-power), you may instead
specify and retrieve the actual power output of the reader. This is for convenience only, as the two
commands ultimately control the same radio hardware.

RFLevel and RFAttenuation are always related by the formula: MaxPower = RFLevel + RFAttenuation

The command could be used in either of the following variations:

1. RFlevel = <power>This command sets the same power level for all antennas.

2. RFlevel = <antenna> <power>

This command sets power level for each antenna individually.

3. RFlevel = <antenna> <readpower> <writepower>

<antenna> is the antenna number.

<readpower> is the RF power level to use when reading tags as well as when

 reading/singulating tags during programming.

<writepower> is the RF power level to use when writing to the tag.

This command sets power levels for read-power-during-programming and write-power-during-
programming to better control the programming environment. Power settings are specified for
each antenna independently.
For example, to keep the program zone small you could read/singulate tags at low power but,
once the tag is singulated, use full power to write to the tag. This ensures there is always enough
power to complete the write operation.

NOTE: This variation of the RFLevel command is not available on the ALR-9580 & 9650.

The value of the <power> parameter is as follows:

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

45

 Allowed Values: Integer (<minPower>..<maxPower>) (depends on locality)

 Default Value: <maxPower>

 The minimum value for RFLevel is MaxPower-MaxAttenuation.

 Increasing RFLevel by 10 increases RF power by 1 dB, and you see a corresponding
decrease by 10 in the RFAttenuation.

 The RFLevel value applies to all antennas, unless the command is used with an
optional antenna argument. See examples below.

RFLevel Examples
Command

Response

>RFLevel?

RFLevel = 316

Command

Response

// To reduce power by 3 dB:

>RFLevel = 286

RFLevel = 286

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Set RFLevel of only antenna 0

>RFLevel = 0 250

RFLevel = 250

// Compare RFLevel of ant 0 with ant 1

>RFLevel 0?

RFLevel = 250

>RFLevel 1?

RFLevel = 316

// Get RFLevel (without arguments) always gives ant 0 value

>RFLevel?

RFLevel = 250

// read/singulate tags at low power (200) and program at high power (300)

>RFLlevel = 0 200 300

RFLlevel = 0 200 300

RFModulation
F800 | 9900 | 9680 | 9650

The RFModulation command allows you to select from several modulation modes available with the Gen2
protocol. Each mode selects a pre-defined set of Gen2 air protocol parameters, and an internal inventory
algorithm to best suit a particular circumstance.

 Allowed Values (depends on locality):
DRM | STD | HS | 25M4 | 12M4 | 06M4 | 25FM0 | 12FM0 | 06FM0 | 25M2 | 12M2 | 06M2

 Default Value: DRM (depends on locality)

Three of the modes (DRM, STD, HS) are convenient names for the other defined modes:

 DRM – Dense Reader Mode (same as 25M4)

 STD – Standard (same as 25FM0)

 HS – High Speed (same as 06FM0)

 25FM0 – 25 μsec Tari, FM0

 06FM0 – 06 μsec Tari, FM0

 25M4 – 25 μsec Tari, Miller4

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

46

 12M4 – 12 μsec Tari, Miller4

 06M4 – 06 μsec Tari, Miller4

 25M2 – 25 μsec Tari, Miller2

 12M2 – 12 μsec Tari, Miller2

 06M2 – 06 μsec Tari, Miller2

Some reader models, or country-specific versions of those models, may not support all modulation
modes, due to regulatory restrictions. Also, the ALR-9650/9680 readers only support Dense Reader
Mode (DRM).

Value Description

DRM

Dense Reader Mode (default). Enhanced filtering for better performance in
"noisy" environments. Recommended when many readers are operating in
the same area. This mode meets the "EPCglobal Dense Reader Mode"
spectral mask requirements.

STD
Standard operating mode. This mode is good for general purpose use. It
combines a good mix of speed and noise/interference immunity. This mode
meets the "EPCglobal Dense Reader Mode" spectral mask requirements.

HS
High Speed operating mode. Uses high reader-to-tag data rates for better
performance with small tag populations, in environments with few readers.

[Tari][Mod]
All of the remaining modes follow a standard naming convention: the Tari (in
μsec), followed by the modulating scheme, such as FM0, M4 (Miller 4), etc.

RFModulation Examples

Command

Response

>RFModulation?

RFModulation = DRM

Command

Response

>RFModulation = HS

RFModulation = HS

FactorySettings
F800 | 9900 | 9680 | 9650

The FactorySettings command resets all reader settings to their factory default values. The ALR-x780
readers then reboot themselves. The reboot is required in order for the new settings (especially network
values) to take effect.

FactorySettings Examples

Command

Response

>FactorySettings

All settings reset to factory defaults.

Reboot
F800 | 9900 | 9680 | 9650

The Reboot command causes the reader to immediately close all network connections and reboot.

 It is recommended that you reboot the reader any time network configuration
parameters are changed.

 Readers may also be rebooted via their web interface.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

47

Reboot Examples

Command

Response

>Reboot

Rebooting System...

Service
F800 | 9900 | 9680 | 9650

The Service command is used to control auxiliary reader services, such as the serial interface and SNMP.
The service command is followed by the name of the service you wish to control, followed by a command.

The "all" keyword may be used in place of a service name, to control all installed services.

Service <servicename> <command>

The available services depend on the reader model and the firmware:

Service Description

serial

This controls the reader's serial interface. When the serial interface is turned
off, the serial port connects into the reader's underlying Linux operating system
prompt, which is intended for Alien use only. ALR-F800 readers have two serial
ports, with their own service names: “serial0” (RS-232) and “serial1” (USB).

snmp
Readers implement the Simple Network Management Protocol v1, MIB2. If you
do not have a use for this service, turning it off frees up some system
resources.

heartbeat

The reader's heartbeat service can now be completely shut off or disabled –
independent of "softer" ways of doing so, by setting HeartbeatCount=0, for
instance. Stopping and disabling the heartbeat service prevents it from ever
starting up again – even after a firmware upgrade.

ifmon

The reader's service that monitors the Ethernet interface (every 5 minutes) as
follows: if DHCP is ON and either Ethernet is DOWN or the DHCP lease has
expired, it renews the DHCP lease (or sets a static IP if the DHCP renew fails);
if DHCP is OFF and Ethernet is DOWN, then it sets a static

IP. When setting a static IP, the service uses 192.168.1.100/255.255.255.0 or
the last static IP/netmask values that were used (if any).

NOTE: snmp, heartbeat, ifmon services are not listed for the ALR-F800 as they are part of
the reader OS system services.

The available service commands are as follows:

Command Description

status

Reports the current status of the selected service, or lists the status of all
installed services if "all" is given as the service name. Each line lists the
service name, whether it is currently running (R = running, s = stopped),
whether autostart is enabled (A = enabled, d = disabled), and a number
indicating the startup order of the services.

start

stop

Starts or stops the service. This controls the immediate state of the service
only. If autostart is enabled, the service starts up again the next time that the
reader reboots. The reader responds with the new status line for the
service(s).

enable

disable

Enables or disables the autostart feature for the service. When autostart is
enabled, the service starts up automatically when the reader boots.
Changing the autostart setting does not immediately start or stop the service
– use the start and stop commands to accomplish this. The reader responds
with the new status line for the service(s).

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

48

The "start" and "stop" service commands act right away, but don't change which services are
automatically started up if the reader reboots. The "enable" and "disable" service commands affect how
the reader starts up on subsequent reboots, but they don't change the which services are running right
now.

The start/stop and enable/disable settings of individual services do not need to be "saved", as other
reader properties do.

On the ALR-F800 reader, you can “release” any one of the two serial ports, and the reader will stop using
it entirely. This frees up the serial port for your own uses (an on-board Ruby application, for instance).

Use the “release” subcommand to do this, as in: “service serial0 release” to release the RS-232

port. You should also disable that port, so that the reader doesn’t try to use it again the next time it boots

(e.g. “service serial0 disable”). This is because any serial port that has been released will be

automatically “unreleased” the next time that serial interface is started.

Additionally, you can specify which serial port the ALR-F800 reader uses for its bootup/console output.
For example:

 service serial bootlog serial0 (bootlog on RS-232)

 service serial bootlog serial1” (bootlog on USB)

 service serial bootlog off” (quiet boot)

Service Examples

Command

Response

>service serial status

R A 05 serial

// currently Running, Autostart enabled, startup priority 5

Command

Response

>service all status

R A 05 serial

R A 80 snmp

Command

Response

>service serial stop

s A 05 serial

// the serial service is stopped, but it starts up again on the

next boot

Command

Response

>service serial disable

s d 05 serial

// service is disabled, it will not be started on the next boot

Command

Response

Command

Response

Command

Response

Command

Response

// ALR-F800 examples...

// report the status of both serial ports

>service serial status

R A 30 serial0

R A 30 serial1

// report the status of just serial0 (RS-232)

>service serial0 status

R A 30 serial0

// release RS-232 for personal use

>service serial0 release

service serial0 RELEASED

>service serial0 disable

s d 30 serial0

// turn off the serial bootlog

>service serial bootlog off

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

49

MyData
F800 | 9900 | 9680 | 9650

The MyData command gives you a 254-character scratchpad to store whatever data you wish. Some
examples might be the reader location with GPS coordinates or the reader provisioning status or history.

 You must issue the Save command to make your MyData changes persistent.

 MyData content is retained across firmware upgrades, like other reader properties.

MyData Examples

Command

Response

Command

Response

>MyData?

MyData = (Not Set)

>MyData = It's warm and sunny here: Lat: 37.14276, Long: -121.65615

MyData = It's warm and sunny here: Lat: 37.14276, Long: -121.65615

ETSIMode
F800 | 9900+ | 9900 | 9680 | 9650

The default ETSI mode that an EMA reader operates under is EN 302 208 v1.3.1. Readers configured for
Europe/Middle East/Asia can be directed to meet the requirements of the EN 300 220 standard using the
ETSIMode command.

 Allowed Values: "302.208v1.3.1" or "300.220"

 Default Value: "302.208v1.3.1"

The reader must be rebooted in order for changes to the ETSIMode to take full effect. After the
ETSIMode is changed, the ReaderType reflects the new regulatory standard.

ETSIMode Examples

Command

Response

Command

Response

>ETSIMode?

ETSIMode = 302.208

>ReaderType?

ReaderType = Alien RFID Tag Reader, Model ALR-9900+ (Four Antenna /

Gen 2 / EN 302 208)

Command

Response

Command

Response

>ETSIMode = 300.220

ETSIMode = 300.220

>ReaderType?

ReaderType = Alien RFID Tag Reader, Model ALR-9900+ (Four Antenna /

Gen 2 / EN 300 220)

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

50

Network Configuration Commands

These commands allow you to configure and retrieve settings related to reader communications with the
network.

MACAddress
F800 | 9900 | 9680 | 9650

The MAC (Media Access Control) Address is a unique, hardcoded value that identifies each device with a

network interface. The reader's MAC Address can be retrieved with the MACAddress command.

The value returned is a sequence of six hex bytes, separated by colons.

MACAddress Example

Command

Response

>MACAddress?

MACAddress = 00:90:c2:c3:14:38

DHCP
F800 | 9900 | 9680 | 9650

DHCP6
F800 | 9900 | 9680 | 9650

The reader supports automatic network configuration using the widely available DHCP protocol. If DHCP
is available at the reader installation site, this protocol can be switched on. If DHCP is not available or not
desired the use of this protocol should be switched off.

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

 After making changes with this command, you must issue the Save command and

reboot the reader to implement the changes.

 If DHCP is on and no server is available when the reader boots up, it will use a
default network address (192.169.1.100), and then periodically try to communicate
with the DHCP server.

 The ALR-F800 reader also supports IPV6 networking, and the DHCP6 command
controls the IPV6 version of DHCP.

DHCP Examples

Command

Response

>DHCP?

DHCP = ON

Command

Response

>DHCP = OFF

DHCP = OFF

DHCPTimeout
F800 | 9900 | 9680 | 9650

When the reader is set up to get its network configuration automatically from a DHCP server, it gives up
waiting for a reply from a DHCP server after a certain period of time, and use a default (static) network

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

51

configuration instead (IP: 192.168.1.100, Netmask: 255.255.255.0, etc.) The amount of time to wait for
the DHCP server's reply is given by the DHCPTimeout property.

The default value, 90 seconds, is generally fine for most situations, but it has been found that on networks
with high latencies or when the reader is plugged directly into a LAN drop (not plugged into a router or
network switch), a higher timeout works better. If you find the reader is often not getting its network
configuration settings from the DHCP server when it boots, you may want to increase the DHCPTimeout
to 120 seconds or higher.

 Allowed Values: Integer(0..1000)

 Default Value: 90

 After making changes with this command, you must issue the Save command and

reboot the reader to implement the changes.

DHCPTimeout Examples

Command

Response

>DHCPTimeout?

DHCPTimeout = 90

Command

Response

>DHCPTimeout = 120

DHCPTimeout = 120

IPAddress
F800 | 9900 | 9680 | 9650

IPAddress6
F800 | 9900 | 9680 | 9650

If DHCP is not used for automatic configuration, the reader must be manually configured for use on a
network. The IPAddress command allows you to assign and retrieve the host’s IP address.

 DHCP should be off in order to change the IPAddress.

 After making changes with this command, you should issue the Save command and

reboot the reader to implement the changes.

 The ALR-F800 reader also supports IPV6 networking, and the IPAddress6 command
controls the IPV6 version of IPAddress.

IPAddress Examples

Command

Response

>IPAddress?

IPAddress = 12.34.56.78

Command

Response

>IPAddress =34.55.33.12

IPAddress = 34.55.33.12

Gateway
F800 | 9900 | 9680 | 9650

Gateway6
F800 | 9900 | 9680 | 9650

If DHCP is not used for automatic configuration, the reader must be manually configured for use on a
network. The gateway command allows the network gateway to be assigned and retrieved.

 Gateway must be specified as a numerical IP address.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

52

 DHCP should be off in order to change the Gateway.

 After making changes with this command, you should issue the Save command and

reboot the reader to implement the changes.

 If the Gateway address doesn’t point to a valid address on your network, then the
reader may not be able to make any outbound connections (e.g. TagStream,
Heartbeats, Notification messages).

 The ALR-F800 reader also supports IPV6 networking, and the Gateway6 command
controls the IPV6 version of Gateway.

Gateway Examples

Command

Response

>Gateway?

Gateway = 34.56.78.90

Command

Response

>Gateway=12.56.23.01

Gateway = 12.56.23.01

Netmask
F800 | 9900 | 9680 | 9650

Netmask6
F800 | 9900 | 9680 | 9650

If DHCP is not used for automatic configuration, the reader must be manually configured for use on a
network. The subnet mask command allows the subnet mask to be assigned and retrieved.

 A subnet mask must be specified as a numerical IP address.

 DHCP should be off in order to change the Netmask.

 After making changes with this command, you should issue the Save command and

reboot the reader to implement the changes.

 The ALR-F800 reader also supports IPV6 networking, and the Netmask6 command
controls the IPV6 version of Netmask.

Netmask Examples

Command

Response

>Netmask?

Netmask = 255.255.255.128

Command

Response

>Netmask=255.255.255.0

Netmask = 255.255.255.0

DNS
F800 | 9900 | 9680 | 9650

If DHCP is not used for automatic configuration, the reader must be manually configured for use on a
network. The DNS command allows the DNS server location to be assigned and retrieved.

 A DNS server must be specified as a numerical IP address.

 DHCP should be off in order to change the DNS.

 After making changes with this command, you should issue the Save command and

reboot the reader to implement the changes.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

53

DNS Examples

Command

Response

>DNS?

DNS = 12.34.56.78

Command

Response

>DNS=45.224.124.34

DNS = 45.224.124.34

Hostname
F800 | 9900 | 9680 | 9650

You can configure the reader's identity on the network with the Hostname command. When a reader's
hostname is known to a local Domain Name Server, that reader may be accessed over the network by it's
hostname, without having to know its IP address.

It is common for a DHCP server to assign hostnames to network devices, and in these cases the reader
uses whatever hostname is supplied by DHCP, even if you have specified a different hostname with the
Hostname command.

 Allowed Values: String[1-16]

 Default Value: "alien-xxyyzz", where xx, yy, and zz are the last three bytes of the
reader's unique MAC address.

 Changes to the hostname take effect immediately.

Hostname Examples

Command

Response

>Hostname?

Hostname = alien-10116A

Command

Response

>Hostname = reader1

Hostname = reader1

NetworkUpgrade
F800 | 9900 | 9680 | 9650

Alien readers can be configured to automatically upgrade themselves at bootup. After configuring the
UpgradeAddress, you enable this feature by setting the NetworkUpgrade flag to On, then simply reboot
the reader. You can alternatively issue the UpgradeNow command to trigger an upgrade check
immediately.

When the reader boots up, it checks the NetworkUpgrade flag to determine if it should look for an
upgrade. If so, it attempts to pull down an upgrade file from an FTP, HTTP, or HTTPS server. It then
installs the upgrade, and continues the bootup process.

Details on the various upgrade mechanisms can be found in Appendix C, at the end of this document.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

 Set NetworkUpgrade to "On", issue the "Save" command, and reboot the reader to
initiate a network upgrade.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

54

NetworkUpgrade Examples

Command

Response

>NetworkUpgrade?

NetworkUpgrade = Off

Command

Response

>NetworkUpgrade = On

NetworkUpgrade = On

UpgradeAddress
F800 | 9900 | 9680 | 9650

You can use the UpgradeAddress command to specify the network host where the reader looks for
upgrades. The value specified is a complete URL to the HTTP, HTTPS, or FTP server and directory path
where the upgrade files are located. The reader attempts to download a "control" file at the path specified,
which contains the name of the upgrade file to download. Complete details of this process are found in
Appendix C.

 The default value for UpgradeAddress is 0.0.0.0.

 Readers accept the "UpgradeIPAddress" command, for compatibility with older
readers.

 Changes to the UpgradeAddress commands take effect (after issuing the Save
command) upon the next reboot.

UpgradeAddress Examples

Command

Response

>UpgradeAddress?

UpgradeAddress = 0.0.0.0

Command

Response

>UpgradeAddress = http://192.168.1.200/alienUpgrades/

UpgradeAddress = http://192.168.1.200/alienUpgrades/

UpgradeNow
F800 | 9900 | 9680 | 9650

The UpgradeNow command allows you to trigger a firmware upgrade without having to reboot your
reader. See the sections on NetworkUpgrade, UpgradeAddress (above), as well as the "Pulling
Upgrades" section of appendix C for more information about the network upgrade feature.

The easiest way to use UpgradeNow is to preset the UpgradeAddress with the URL where the firmware
and control files are at, and then simply issue the UpgradeNow command. You can alternatively include a
URL as an argument to the UpgradeNow command and the reader looks there instead.

UpgradeNow

or
UpgradeNow http://192.168.100.150/firmware/

You can also include a "list" argument to the command and the reader looks at what is at the
UpgradeAddress (or URL you provide) and lists the files found there.

UpgradeNow list

or
UpgradeNow list http://192.168.100.150/firmware/

Finally, there is a "force" argument which causes the reader to download and install whatever firmware it
finds, regardless of the current firmware version.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

55

UpgradeNow force

or
UpgradeNow force http://192.168.100.150/firmware/

 The "list" and "force" arguments cannot be used together.

 Once a firmware upgrade has begun, refrain from issuing reader commands, and do
not allow the reader to lose power during the process.

 At some point during a firmware upgrade, all reader services and tag-reading activity
halts. Network connections are interrupted, and the reader's heartbeat ceases until
the upgrade is complete. If you see the message, "WARNING: DO NOT UNPLUG
THE POWER!", you must wait until the reader becomes responsive again – TCP
connections are accepted, Alien> prompt on the serial line, or the resumption
of reader heartbeats. Resist the urge to pull the power plug! Interrupting power
at this time may result in a corrupted firmware load, and the reader will have to
be returned to the factory.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

56

UpgradeNow Examples

Command

Response

Command

Response

// UpgradeNow using a preset UpgradeAddress (same firmware version)

>UpgradeAddress = http://192.168.1.123/fw/alien

UpgradeAddress = http://192.168.1.123/fw/alien

>UpgradeNow

Running Network Upgrade 04/14/08 13:29:45 GMT+8A

Upgrade URL : http://192.168.1.123/fw/alien

Reader Version : 08041100

Package Downgrading : enabled

List of Packages :

==

ALRx800_fw_080411.tar.aef

==

control line : ALRx800_fw_080411.tar.aef

package version : 08041100

...skipping ALRx800_fw_080411.tar.aef (same version)

No upgrades performed

Command

Response

// UpgradeNow, with explicit address (new firmware version)

>UpgradeNow http://192.168.1.123/fw/alien

Running Network Upgrade 08/13/08 10:44:55 GMT+7A

Upgrade URL : http://192.168.1.123/fw/alien

Reader Version : 08081200

Package Downgrading : enabled

List of Packages :

==

ALRx800_fw_080813_BETA.tar.aef

==

control line : ALRx800_fw_080813_BETA.tar.aef

package version : 08081300

...downloading ALRx800_fw_080813_BETA.tar.aef

...decrypting ALRx800_fw_080813_BETA.tar.aef

...unpacking ALRx800_fw_080813_BETA.tar

...installing ALRx800_fw_080813_BETA

WARNING: DO NOT UNPLUG THE POWER!

// The following output is visible only on the serial port:

Alien>

Alien Technology RFID Reader

[ALIEN DRV] ALIEN READER driver ver 1.54.080111 UNLOADED

[ALIEN DRV] ALIEN READER driver ver 1.54.080111 LOADED

HOST activated (build: Aug 13 2008 02:10:19)

Boot> Ready

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

57

UpgradeNow List & Force Examples

Command

Response

// UpgradeNow, listing the files

>UpgradeNow list

ALRx800_fw_080813_BETA.tar.aef

Command

Response

// UpgradeNow with the force option (reload same firmware version)

>UpgradeNow force

Running Network Upgrade 08/13/08 10:52:52 GMT+7A

Upgrade URL : http://10.10.82.10/dailybuild/

Reader Version : 08081300

Package Downgrading : enabled

List of Packages :

==

ALRx800_fw_080813_BETA.tar.aef

==

control line : ALRx800_fw_080813_BETA.tar.aef

package version : 08081300

...downloading ALRx800_fw_080813_BETA.tar.aef

...decrypting ALRx800_fw_080813_BETA.tar.aef

...unpacking ALRx800_fw_080813_BETA.tar

...installing ALRx800_fw_080813_BETA

WARNING: DO NOT UNPLUG THE POWER!

// The following output is visible only on the serial port:

Alien>

Alien Technology RFID Reader

[ALIEN DRV] ALIEN READER driver ver 1.54.080111 UNLOADED

[ALIEN DRV] ALIEN READER driver ver 1.54.080111 LOADED

HOST activated (build: Aug 13 2008 02:10:19)

Boot> Ready

NetworkTimeout
F800 | 9900 | 9680 | 9650

When the reader receives a command on its Command port, it opens a TCP socket and waits for data to
arrive. If inbound communication ceases, rather than hold the socket open indefinitely the reader waits a
period of time then automatically closes the connection, ignoring any partial command it may have
already received. This time period is the NetworkTimeout.

 Allowed Values: Integer (10..65535)

 Default Value: 90 seconds

NetworkTimeout Examples
Command

Response

>NetworkTimeout?

NetworkTimeout = 90

Command

Response

>NetworkTimeout = 120

NetworkTimeout = 120

 // Example Behavior (using Telnet)

>NetworkTimeout = 15

NetworkTimeout = 15

// Wait more than 15 seconds

Connection Timeout.

Closing Connection…Bye!

// Telnet session ends

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

58

CommandPort
F800 | 9900 | 9680 | 9650

The reader can be configured and operated over the network using standard network sockets. The
CommandPort settings are used to assign and retrieve the exact port number used by the reader for this
network connectivity.

 Allowed Values: Integer(1..65535)

 Default Value: 23 (the standard Telnet port)

 Changes to this setting do not affect serial communication and/or Web
communication with the reader.

 Changes to this setting don't take affect until the reader reboots.

CommandPort Examples

Command

Response

>CommandPort?

CommandPort = 23

Command

Response

>CommandPort = 10004

CommandPort = 10004

CommandPortLocal
F800 | 9900 | 9680 | 9650

The CommandPortLocal command is used to assign the port number for TCP connections to the reader

originated from the reader itself (from the localhost). The default value for this port is 2300. This feature is
intended to support (Ruby) on-reader applications. It is an independent command channel in addition to

the standard command channel on port 23 (assigned by the CommandPort command). Using port 2300

leaves the standard port 23 available for external connections to the reader, so reader can be controlled
from both the on-reader application and the command channel on port 23 at the same time. This could be
desirable or not depending on the logic of your application, so select whichever port works for your use

case. To disable the external command channel on port 23 set AcceptConnections= local.

 Allowed Values: Integer(1..65535)

 Default Value: 2300

 Changes to this setting do not affect serial communication and/or Web
communication with the reader.

 Changes to this setting don't take affect until the reader reboots.

CommandPortLocal Examples

Command

Response

>CommandPortLocal?

CommandPort = 2300

Command

Response

>CommandPortLocal = 2345

CommandPortLocal = 2345

AcceptConnections
F800 | 9900 | 9680 | 9650

The reader can be restricted to only accept TCP connections originated from the reader itself (from the

localhost). The command AcceptConnections = {ANY | LOCAL} controls this behavior.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

59

Setting AcceptConnections = LOCAL prevents any TCP connections, initiated from outside the

reader, from being accepted. Only connections originated from within the reader (for example from
custom Ruby user applications running on the reader) will be accepted.

Changes must be Saved and the reader rebooted before the new behavior takes effect.

 Allowed Values: ANY | LOCAL

 Default Value: ANY

 Changes to this setting do not affect serial communication and/or Web
communication with the reader.

 Changes to this setting don't take affect until the reader reboots.

AcceptConnections Examples

Command

Response

>AcceptConnections?

AcceptConnections = ANY

Command

Response

> AcceptConnections = local

AcceptConnections = local

Ping
F800 | 9900 | 9680 | 9650

The ping command is used for testing network connectivity between the reader and a specified network
address. The traditional form of the ping command requires only the IP address (or hostname) of the
target device. The reader sends an ICMP "ECHO_REQUEST" command to the target, which immediately
replies to the reader if it successfully receives the request. The ping command not only tests for a
successful connection, but also indicates the round-trip time for the transaction, which can be a useful
indication of latencies present on the network.

Alien readers also provide a modified version of the ping command, where you specify a port number to
connect to, in addition to the target's address. In this case, the reader attempts to open a socket to the
device on that port number. It then reports not only a successful network route to the target, but also
whether the target is listening for connections on the specified port. You can therefore test to see if your
MailServer or NotifyAddress properties were set correctly.

Ping (IP Address) Examples

Command

Response

// Successful Ping:

>ping 192.167.1.200

PING 192.167.1.200 (192.167.1.200): 56 data bytes

64 bytes from 192.167.1.200: icmp_seq=0 ttl=128 time=1.6 ms

64 bytes from 192.167.1.200: icmp_seq=1 ttl=128 time=1.2 ms

64 bytes from 192.167.1.200: icmp_seq=2 ttl=128 time=1.2 ms

--- 192.167.1.200 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 1.2/1.3/1.6 ms

Command

Response

// Unsuccessful Ping:

>ping 192.168.1.199

PING 192.168.1.199 (192.168.1.199): 56 data bytes

--- 192.168.1.199 ping statistics ---

3 packets transmitted, 0 packets received, 100% packet loss

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

60

Ping (IP Address : Port) Examples

Command

Response

// Successful Ping:

>ping 192.167.1.200:3600

Opening Socket at 192.168.1.200:3600 [192.168.1.200:3600]

Remote Host Located

Establishing Connection

Established Connection

Closing Connection

Closed Connection

Socket Successfully Located, Opened and Closed

Command

Response

// Unsuccessful Ping:

>ping 192.168.1.199:3600

Opening Socket at 192.168.1.199:3600 [192.168.1.199:3600]

Remote Host Located

Establishing Connection

Error: Unable to Open Socket on Remote Host (Timeout)

HeartbeatPort
F800 | 9900 | 9680 | 9650

The reader can be configured to periodically send out a heartbeat message to the network. This
heartbeat takes the form of a single UDP packet (Universal Datagram Packet) broadcast out to the entire
subnet or a particular address.

The HeartbeatPort command allows you to configure the actual port number that this packet is sent out
to.

Listening for this heartbeat can be used to initially locate a reader on a network and subsequently make
sure that the reader is still alive.

 Allowed Values: Integer(0..65535)

 Default Value: 3988

See chapter 2 for more information about the reader heartbeat.

HeartbeatPort Examples

Command

Response

>HeartbeatPort?

HeartbeatPort = 3004

Command

Response

>HeartbeatPort=10002

HeartbeatPort = 10002

HeartbeatTime
F800 | 9900 | 9680 | 9650

The reader can be configured to periodically send out a heartbeat message to the network. This
heartbeat takes the form of a single UDP packet (Universal Datagram Packet) broadcast out to the entire
subnet or a particular address.

The time interval between heartbeats can be assigned and retrieved using this command.

 Allowed Values: Integer(0..86400)

 Default Value: 30

 All intervals are specified in seconds.

 A setting of zero (seconds) suspends the output of any further heartbeats.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

61

HeartbeatTime Examples

Command

Response

>HeartbeatTime?

HeartbeatTime = 30

Command

Response

>HeartbeatTime=60

HeartbeatTime = 60

HeartbeatAddress
F800 | 9900 | 9680 | 9650

The reader can be configured to periodically send out a heartbeat message to the network. This
heartbeat takes the form of a single UDP packet (Universal Datagram Packet) broadcast out to the entire
subnet or a particular address.

The address of the host to receive these packets is defined by the HeartbeatAddress command.

 The default value 255.255.255.255 is a special "multicast" address, which enables all
devices on the subnet to receive the packets.

HeartbeatAddress Examples

Command

Response

>HeartbeatAddress?

HeartbeatAddress = 255.255.255.255

Command

Response

>HeartbeatAddress =10.1.70.17

HeartbeatAddress = 10.1.70.17

HeartbeatCount
F800 | 9900 | 9680 | 9650

The HeartbeatCount property specifies how many heartbeat messages the reader broadcasts after it
boots. After this point the reader stops sending heartbeat messages until the HeartbeatCount is changed,
or the reader is rebooted.

 Allowed Values: Integer(-1..65535)

 Default Value: -1 (the reader sends heartbeat messages indefinitely)

HeartbeatAddress Examples

Command

Response

>HeartbeatCount?

HeartbeatCount = -1

Command

Response

>HeartbeatCount = 5

HeartbeatCount = 5

HeartbeatNow
F800 | 9900 | 9680 | 9650

The HeartbeatNow command forces the reader to immediately issue a UDP heartbeat, regardless of the
HeartbeatTime or HeartbeatCount values. The command returns the entire XML-formatted heartbeat
packet that was broadcast.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

62

HeartbeatNow Example
Command

Response
>HeartbeatNow

<?xml version="1.0" encoding="UTF-8"?>

<Alien-RFID-Reader-Heartbeat>

 <ReaderName>Bob's 9800</ReaderName>

 <ReaderType>Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna

/ Multi-Protocol / 902-928 MHz)</ReaderType>

 <IPAddress>192.168.100.150</IPAddress>

 <CommandPort>23</CommandPort>

 <HeartbeatTime>3</HeartbeatTime>

 <MACAddress>00:80:66:10:11:6A</MACAddress>

 <ReaderVersion>08.06.02.00</ReaderVersion>

</Alien-RFID-Reader-Heartbeat>

ReaderList
F800 | 9900 | 9680 | 9650

Alien readers naturally send out periodic USP “heartbeat” packets on the network in order to announce
themselves. You can use the software APIs to write your own application to detect these heartbeat
packets, but the ALR-F800 reader is also listening for heartbeats from other readers, and you can ask it
at any time for a list of other readers that it has detected on the network with the ReaderList command.

 “get ReaderList” (or just “readerlist?”) returns the list of discovered readers.

 Use “ReaderList=Off” to turn off this feature (and ReaderList=On to turn it back on).

 Use “Clear ReaderList” to wipe the readerlist clean.

Each line of the ReaderList output gives you details about a reader that was detected, including:
 MAC address (e.g. 00:1B:5F:00:00:65)

 IP address & command port (e.g. 10.10.82.141:23)

 Firmware version (e.g. 15.09.03.00)

 Model number (e.g. ALR-F800)

 First & Last heartbeat timestamps (e.g. 2015/09/11 19:51:41)

 How many heartbeats have been received, and how often (e.g. 408@30)

 ReaderName (e.g. Alien RFID Reader)

ReaderList Example

Command

Response

>ReaderList?

MAC:00:1B:5F:00:00:63, IP:10.10.82.141:23, FW:15.09.03.00,

 Model:ALR-F800, First:2015/09/11 19:51:41, Last:2015/09/11

 23:14:40, HB:408@30, Name:Alien RFID Reader

MAC:00:1B:5F:00:01:60, IP:10.10.82.142:23, FW:14.07.01.00,

 Model:ALR-9900, First:2015/09/11 19:52:04, Last:2015/09/11

 23:14:34, HB:406@30, Name:RegTest-9900

MAC:00:1B:5F:00:00:04, IP:10.10.82.132:23, FW:15.09.10.00,

 Model:ALR-F800, First:2015/09/11 21:08:47, Last:2015/09/11

 23:14:20, HB:253@30, Name:Alien RFID Reader

Command

Response

>Clear ReaderList

Reader List has been cleared!

Command

Response

>ReaderList = Off

ReaderList = OFF

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

63

WWWPort
F800 | 9900 | 9680 | 9650

The reader's web server normally listens on port 80 for incoming connections (the default www port). The
WWWPort can be changed to any allowed port number, although care must be taken not to use port
number that is commonly used for other services, such as telnet, NTP, SNMP, etc.

 Allowed Values: Integer(0..65535)

 Default Value: 80

 Setting WWWPort to 0 effectively disables the reader's web server, which may be
desired by some for security reasons. Keep in mind, though, that one of the main
mechanisms for upgrading the reader's firmware uses the web server.

 Changes to WWWPort take effect immediately.

WWWPort Examples

Command

Response

>WWWPort?

WWWPort = 80

Command

Response

>WWWPort = 8080

WWWPort = 8080

HostLog
F800 | 9900 | 9680 | 9650

The HostLog dumps a log of all the host activity (connects, disconnects, timeouts, etc.). This can be used
to figure out when connections were made to the reader, whether serial or TCP, and the IP address of the
connecting host (if TCP).

 HostLog is a "get" command – "Get HostLog" or "HostLog?".

 HostLog data is reset each time the reader boots, and over the course of operations
the associated log files are periodically rotated out when they reach a certain size.

Following is an annotated example of a HostLog:

HostLog Examples
Command

Response

>HostLog?

// A user at 10.10.82.75 is connected

Oct 4 16:18:36 TCP: REQUEST connection from 10.10.82.75 port 1366

Oct 4 16:18:36 TCP: ACCEPTED connection from 10.10.82.75 port 1366

Oct 4 16:18:36 TCP: There are 1 clients active

// User at 10.10.82.75 allowed his connection to timeout:

Oct 4 16:20:45 TCP: No data within 90 seconds! Closing host socket...

Oct 4 16:20:45 TCP: CLOSING connection from 10.10.82.75.

// A user at 10.10.82.50 connects, but fails to enter the correct password

Oct 4 16:20:59 TCP: REQUEST connection from 10.10.82.50 port 4358

Oct 4 16:20:59 TCP: ACCEPTED connection from 10.10.82.50 port 4358

Oct 4 16:20:59 TCP: There are 1 clients active

Oct 4 16:21:00 TCP: Error: Login failed password

Oct 4 16:21:00 TCP: Error: Invalid Username and/or Password

Oct 4 16:21:01 TCP: CLOSING connection from 10.10.82.50.

// The user at 10.10.82.75 connects again:

Oct 4 17:02:49 TCP: REQUEST connection from 10.10.82.75 port 4506

Oct 4 17:02:49 TCP: ACCEPTED connection from 10.10.82.75 port 4506

Oct 4 17:02:49 TCP: There are 1 clients active

// 10.10.82.50 tries to reconnect but refused while 10.10.82.75 is active:

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

64

Oct 4 17:02:58 TCP: REQUEST connection from 10.10.82.50 port 1127

Oct 4 17:02:58 TCP: ConnectionCount=1, Child PID=26530.

Oct 4 17:02:58 TCP: Connection count limit exceeded. Refusing new connection

// Finally, the user at 10.10.82.75 gracefully closes his connection

Oct 4 17:05:15 TCP: CLOSING connection from 10.10.82.75.

DebugHost
F800 | 9900 | 9680 | 9650

The DebugHost command can be used to log each and every command that is issued to the reader, from
both the serial and TCP interfaces. The list of commands is viewed with the HostLog command (see
above).

It is not a good idea to leave DebugHost on, unless you are diagnosing a specific problem, e.g. "why is
my PersistTime always being reset?" Logging each and every command introduces some processing
overhead, and since there is limited space available in the log file, filling it with extraneous data pushes
older entries off the log.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

Following is an example of using the DebugHost command, and an annotated example the HostLog, after
DebugHost has been on for a time period:

DebugHost Examples
Command

Response

>DebugHost = On

DebugHost = ON

Command

Response

>get HostLog

// Some commands were issued on the serial interface:

Oct 5 08:41:51 SER: [readername = This is my reader now!]

Oct 5 08:42:31 SER: [tagtype=16]

Oct 5 08:42:32 SER: [t]

Oct 5 08:42:33 SER: [t]

Oct 5 08:42:34 SER: [t]

Oct 5 08:42:34 SER: [t]

// A TCP connection is made, and they issue some commands:

Oct 5 08:42:42 TCP: REQUEST connection from 10.10.82.50 port 1179

Oct 5 08:42:42 TCP: ACCEPTED connection from 10.10.82.50 port 1179

Oct 5 08:42:42 TCP: There are 1 clients active

Oct 5 08:42:54 TCP: [get readername]

Oct 5 08:42:56 TCP: [q]

Oct 5 08:42:56 TCP: CLOSING connection from 10.10.82.50.

// Finally, the command that initially generated this dump:

Oct 5 08:43:00 SER: [hostlog?]

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

65

Time Commands

The time at which tags are read by a reader is particularly important for many applications. For this
reason, the reader has three time commands to ensure that the onboard real-time clock is always set
accurately.

TimeServer
F800 | 9900 | 9680 | 9650

The reader can synchronize with a network time service to accurately set its internal clock every time it is
rebooted, and keep it adjusted throughout operation. The protocol it uses is called the Network Time
Protocol (NTP), which typically returns the time in UTC format.

In order to use this feature, a TimeServer must be specified. This is the network address of a machine
that is constantly running the NTP service. In the US there are a number of machines owned and
operated by the government, explicitly providing the time and date to Internet users.

 By default the reader is configured to connect to one of these machines on boot-up to
get the current time. After boot-up, the reader continually adjusts its clock to match
the current time reported by the NTP service.

 For a more in-depth description of this server, and a list of other publicly accessible
Daytime Protocol Servers, see: http://www.boulder.nist.gov/timefreq/service/its.htm

 The default setting for this command is one of 132.163.4.101-103, the primary NIST
network time servers. Some alternative time servers are:

 time-a.nist.gov : 129.6.15.28
 time-b.nist.gov : 129.6.15.29
 time.nist.gov : 192.43.244.18

 After making changes with this command, you must save and reboot the reader to
implement the changes.

 If the reader is set up to use DHCP for network configuration, the DHCP server can
supply a TimeServer to use, which overrides any specific TimeServer you may set up
with this command.

 The reader can accept a list of TimeServers to use, either as provided by a DHCP
server, or by giving a space-separated list of servers in the TimeServer command.
This provides redundancy and improved time precision.

TimeServer Examples

Command

Response

>TimeServer?

TimeServer = 129.6.15.28

Command

Response

>TimeServer = 129.6.15.28

TimeServer = 129.6.15.28

Command

Response

// Setting & Getting multiple NTP servers

>TimeServer = 132.163.4.101 132.163.4.102

TimeServer = 132.163.4.101 132.163.4.102

http://www.boulder.nist.gov/timefreq/service/its.htm

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

66

TimeZone
F800 | 9900 | 9680 | 9650

These commands allow the current time zone to be assigned to or retrieved from the reader. The time
zone specifies the number of hours that must be added to or subtracted from UTC (Coordinated Universal
Time; also known as GMT or Zulu) to determine a local time reference.

For example, to convert from UTC to Pacific Standard Time, set the TimeZone to –8. To convert from
UTC to Pacific Daylight Time, set the TimeZone to –7.

 Allowed Values: Integer(-12..12)

 Default Value: -7 (Pacific Daylight Time)

 PDT is -7 because PDT is UTC time minus 7 hours.

 For more information about time zones, servers and UTC, refer to the Website listed
under the Get/Set TimeServer command.

 The ALR-F800 reader allows you to specify a timezone using its “TZ database” name
(e.g. “US/Pacific”). A good list of TZ database zone names can be found here:
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

The reader does not automatically adjust for Daylight Saving Time. A convenient way to adjust for DST is
to manually advance or retard the TimeZone value by one hour.

TimeZone Examples

Command

Response

>TimeZone?

TimeZone = -8

Command

Response

>TimeZone = 3

TimeZone = 3

Time
F800 | 9900 | 9680 | 9650

These commands allow the current time to be assigned to or retrieved from the reader.

 Times used by this command are always specified in local time, as defined by the
TimeZone command.

 Times are always specified by the format YYYY/MM/DD hh:mm:ss.

 Changes made with this command take effect immediately.

Time Examples

Command

Response

>Time?

Time = 2002/6/3 9:23:01

Command

Response

>Time = 2002/6/3 19:23:01

Time = 2002/6/3 19:23:01

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

67

External I/O Commands

These commands allow you to configure and retrieve data from the reader’s external input/outputs. The
concept of a TagList for buffering tag reads has been extended to a new IOList structure and associated
commands, for buffering and reporting changes to the external inputs and outputs, which can be retrieved
at a later time. There is also an IOStream mechanism that streams I/O events to a remote listener over
TCP/IP, so that host applications do not need to constantly poll the reader to determine when an I/O
changes state.

ExternalInput
F800 | 9900 | 9680 | 9650

The reader monitors its external inputs, which can subsequently be controlled by external proximity
detectors and other input devices such as “electric eyes” and magnetic switches. This command allows
these external input values to be obtained. Please refer to the Hardware Setup Guide for pin-out
diagrams.

 The command returns a single byte result that represents the bitmap of the external
input states. Bit 0 (LSB) represents the state of input #0, bit 1 represents the state of
input #1, etc.

ExternalInput Examples

Command

Response

>ExternalInput?

ExternalInput = 2 (i.e., binary "10")

ExternalOutput
F800 | 9900 | 9680 | 9650

The reader controls its external outputs, which can subsequently be used to control external devices such
a doors/gates, security lights, etc. Please refer to the Hardware Setup Guide for pin-out diagrams.

With this command you can get or set the external output states. The single parameter/return value is an
integer bitmap representing the state of the external outputs.

 Bit 0 represents the state of output #1, bit 1 represents the state of output #2, etc.

 For example, to set output #2 high and output #1 low, use the bitmap of 2decimal,
which translates to 10binary.

ExternalOutput Examples

Command

Response

>ExternalOutput = 2

ExternalOutput = 2

Command

Response

>ExternalOutput?

ExternalOutput = 2

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

68

InvertExternalInput
F800 | 9900 | 9680 | 9650

In the default configuration, a high voltage applied to an external input results in an external input reading
of "1", or "on". Depending on the electronics of the connected device, a high voltage applied to the pin
may actually be the result of the device being "inactivate" instead of "activate". To accommodate this case
and avoid possible confusion when examining bitmaps of external input states, turning on
InvertExternalInput reverses the "sense" of all the external inputs, effectively resulting an external input
value to be "1" when the pin voltage is driven low, and vice versa..

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

InvertExternalInput Examples

Command

Response

>ExternalInput?

ExternalInput = 0

Command

Response

>InvertExternalInput = ON

InvertExternalInput = ON

Command

Response

>InvertExternalInput?

InvertExternalInput = ON

Command

Response

>ExternalInput?

ExternalInput = 15 (inverted value - inputs haven't changed)

InvertExternalOutput
F800 | 9900 | 9680 | 9650

In the default configuration, setting an external output to "1", or "on", causes the voltage on that output pin
to go high. Depending on the electronics of the connected device, a high voltage on the pin may cause
that device to "activate" or vice versa. To accommodate this case and avoid possible confusion when
specifying bitmaps of desired external output states, turning on InvertExternalOutput reverses the "sense"
of all the external outputs, effectively causing to pin voltage to go high when the external output is set to
"0", and vice versa.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

 When ON, the inversion of output states is applied both in setting and getting the
output states. It is therefore a transparent change, unless you test the voltage on the
output pins.

 The state of InvertExternalOutput has no effect on the InitExternalOutput during boot-
up. The state defined by InitExternalOutput is applied to the outputs regardless of the
InvertExternalOutput setting.

InvertExternalOutput Examples

Command

Response

>ExternalOutput?

ExternalOutput = 0

Command

Response

>InvertExternalOutput = ON

InvertExternalOutput = ON

Command

Response

>InvertExternalOutput?

InvertExternalOutput = ON

Command

Response

>ExternalOutput?

ExternalOutput = 15 (inverted value - outputs haven't changed)

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

69

InitExternalOutput
F800 | 9900 | 9680 | 9650

When the reader is powered up, it sets the external outputs to states defined by the InitExternalOutput
attribute. This gives you the flexibility to choose which outputs should default to high, and which outputs
should default to low – a very important consideration if there are mechanical devices controlled by the
readers I/O port.

With this command you can get or set the initial external output states. The single parameter/return value
is an integer bitmap representing the states of the external outputs during and after a startup.

 Bit 0 represents the desired state of output #1, bit 1 represents the desired state of
output #2, etc.

 For example, to set output #2 high and output #1 low, use the bitmap of 2decimal, which
translates to 0010binary.

 Changes made with this command take effect during the next reboot.

 The bitmap that you specify is applied directly to the outputs upon startup, without
any inversion that may have been set with InvertExternalOutput.

InitExternalOutput Examples

Command

Response

>InitExternalOutput = 7 (0111binary = #1, 2, 3 high, #4 low)

InitExternalOutput = 7

Command

Response

>InitExternalOutput?

InitExternalOutput = 7

ExternalInputDebounce
F800 | 9990 | 9680 | 9650

This setting is intended to help debounce spurious signals on the external input. The external input event
will be registered if it stays stable for the duration of at least 2x of the parameter value.
The command format is as follows:

 ExternalInputDebounce=<time_msec>

 ExternalInputDebounce?

 <time_msec> is time in milliseconds

 Allowed Values: Integer(0..255)

 Default Value: 1

ExternalInputDebounce Examples

Command

Response

>ExternalInputDebounce?

ExternalInputDebounce = 1

Command

Response

>InitExternalOutput?

InitExternalOutput = 7

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

70

Get IOList (ios)
F800 | 9900 | 9680 | 9650

You can retrieve the reader’s stored IOList with the "Get IOList" command. The reader monitors every
change to its digital inputs and outputs, and records them on an internal IOList. The I/O events are listed
in order of their occurrence. When you retrieve the list, those stored events are cleared.

 The maximum number of I/O events that can be stored in the IOList is 100,000.

 "Get IOList" and "ios" can be used interchangeably.

The format of the data returned by this command is specified using the IOListFormat command, and you
can specify whether to track inputs, outputs, or both (interleaved by event time, or listed separately),
using the IOType command. Both of these commands are described later. In general, each entry on the
IOList indicates whether the event was a change of an digital input (DI) or digital output (DO), a
timestamp of when the event took place, and the new (bit mask) state of the inputs or outputs.

Note that the value indicated in the IOList doesn't tell you explicitly which I/O changed, or even in which
direction – it simply indicates the new state of all the I/O. To determine which I/O changed state, and in
which direction, you have to compare the new value with a previous value.

IOList Examples

Command

Response

>get IOList

IO:DI, Time:2007/01/18 10:15:57.018, Data:0

IO:DO, Time:2007/01/18 10:16:07.486, Data:0

Command

Response

Command

Response

>ExternalOutput = 15

ExternalOutput = 15

>ios

IO:DO, Time:2007/01/18 11:43:42.582, Data:15

IOPersistTime
F800 | 9900 | 9680 | 9650

The IOPersistTime specifies the length of time an IO event remains in the reader’s internal IOList. You
can turn off the IOList completely, hold on to IO events until you later ask for them, with an optional
“persist time” after which stale events will be removed from the list.

 Allowed Values: Integer(-1..86400)

 Default Value: 0 (no IO events are stored)

 Persist times are specified in seconds.

 Setting the IOPersistTime to -1 causes the history to build indefinitely until a get

IOList command is issued; at this point the IOList is returned, and then immediately

cleared.

 An IOPersistTime > 0 means the IO events fill remain on the IOList for that amount of
time before they will be automatically removed. If you don’t ask for the IOList before
then, those events are lost.

 IO events are always streamed first (if IOStreamMode is configured) before they are
stored on the IOList. The IOPersistTime has no effect on IO streaming.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

71

IOPersistTime Examples

Command

Response

>IOPersistTime?

IOPersistTime = 0

Command

Response

>IOPersistTime=300

IOPersistTime = 300

IOType
F800 | 9900 | 9680 | 9650

You specify which I/O events you are interested in tracking and reporting with the IOType command. The
IOType value is specified with one of the logical enumerations, DI, DO, DIO, as follows:
 DI - inputs only
 DO - outputs only
 DIO - inputs and outputs, interleaved by event time (default value)

IOType enumerations can be combined with the "|" (vertical bar), space, comma, semi-colon (;), or
ampersand (&) characters. The reader always reformats them to be separated by a comma.

The default value of IOType is DI.

At present, the only ones that make sense to combine are DI and DO, but in the future there may addition

I/O events that you can combine. For example: IOType = DI, DO

Note, 'DI,DO' is different from 'DIO' as the inputs are listed separately from outputs (not interleaved)

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

72

IOType Examples
Command

Response

Command

Response

>IOType?

IOType = DIO

>get IOList

IO:DI, Time:2007/01/19 09:48:16.471, Data:0

IO:DO, Time:2007/01/19 09:48:26.918, Data:0

IO:DI, Time:2007/01/19 10:08:17.627, Data:13

IO:DI, Time:2007/01/19 10:08:32.718, Data:9

IO:DO, Time:2007/01/19 10:08:35.266, Data:11

IO:DO, Time:2007/01/19 10:08:37.856, Data:3

IO:DI, Time:2007/01/19 10:08:39.766, Data:13

IO:DI, Time:2007/01/19 10:08:40.538, Data:15

IO:DO, Time:2007/01/19 10:08:42.867, Data:0

IO:DO, Time:2007/01/19 10:08:45.477, Data:211

Command

Response

Command

Response

// Assuming the same I/O events as above…

>IOType = DI

IOType = DI

>ios

IO:DI, Time:2007/01/19 09:48:16.471, Data:0

IO:DI, Time:2007/01/19 10:08:17.627, Data:13

IO:DI, Time:2007/01/19 10:08:32.718, Data:9

IO:DI, Time:2007/01/19 10:08:39.766, Data:13

IO:DI, Time:2007/01/19 10:08:40.538, Data:15

Command

Response

Command

Response

// Assuming the same I/O events…

>IOType = DO

IOType = DO

>ios

IO:DO, Time:2007/01/19 09:48:26.918, Data:0

IO:DO, Time:2007/01/19 10:08:35.266, Data:11

IO:DO, Time:2007/01/19 10:08:37.856, Data:3

IO:DO, Time:2007/01/19 10:08:42.867, Data:0

IO:DO, Time:2007/01/19 10:08:45.477, Data:211

Command

Response

Command

Response

// Assuming the same I/O events…

>IOType = DI, DO

IOType = DI,DO

IO:DI, Time:2007/01/19 09:48:16.471, Data:0

IO:DI, Time:2007/01/19 10:08:17.627, Data:13

IO:DI, Time:2007/01/19 10:08:32.718, Data:9

IO:DI, Time:2007/01/19 10:08:39.766, Data:13

IO:DI, Time:2007/01/19 10:08:40.538, Data:15

IO:DO, Time:2007/01/19 09:48:26.918, Data:0

IO:DO, Time:2007/01/19 10:08:35.266, Data:11

IO:DO, Time:2007/01/19 10:08:37.856, Data:3

IO:DO, Time:2007/01/19 10:08:45.477, Data:211

IOListFormat
F800 | 9900 | 9680 | 9650

The IOListFormat command lets you specify the formatting of IOLists. The command takes a text string
as its argument, and can be one of the following:

Format Description

Text IOList displayed as plain text messages, one I/O event per line.

Terse IOList displayed as plain text messages, one I/O event per line, but with a
simplified output showing just the type of event, timestamp, and value, with no
labels.

XML IOList displayed in XML text format

Custom IOList displayed in the format given by IOListCustomFormat.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

73

 All timestamps on the IOList include millisecond resolution, either with .xxx after the
seconds in the human-readable form, or as the number of milliseconds since the
UNIX epoch (Jan 1, 1970).

 The default value is "Text".

 Text-formatted IOLists take the general form:

 IO:{DI|DO}, Time:YYYY/MM/DD hh:mm:ss.xxx, Data:<integer value>

 For example:
 IO:DI, Time:2007/01/19 09:48:16.471, Data:0

 IO:DO, Time:2007/01/19 09:48:26.918, Data:0

 Terse-formatted IOLists take the general form (1 = DI, 2 = DO):

 {1|2},<millisecond timestamp>,<integer value>

 For example:
 2,1169231710479,1 // DOs went to state 1

 1,1169231712696,13 // DIs went to state 1

 XML-formatted IOLists take the general form:

 <?xml version="1.0" encoding="UTF-8"?>

 <Alien-RFID-IO-List>

 <Alien-RFID-IO>

 <Type>{DI | DO}</Type>

 <Time>YYYY/MM/DD hh:mm:ss.xxx</Time>

 <Data><integer value></Data>

 </Alien-RFID-IO>

 …

 </Alien-RFID-IO-List>

 For example:
 <?xml version="1.0" encoding="UTF-8"?>

 <Alien-RFID-IO-List>

 <Alien-RFID-IO>

 <Type>DO</Type>

 <Time>2007/01/19 10:39:16.349</Time>

 <Data>5</Data>

 </Alien-RFID-IO>

 </Alien-RFID-IO-List>

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

74

 Custom-formatted IOLists use the formatting string specified by IOListCustomFormat,
substituting actual values in place of defined "custom tokens". See the
IOListCustomFormat section (below) for more information and examples.

IOListFormat Examples

Command

Response

>IOListFormat?

IOListFormat = Text

Command

Response

>IOListFormat = XML

IOListFormat = XML

IOListCustomFormat
F800 | 9900 | 9680 | 9650

The IOListCustomFormat command allows a customized IOList to be defined. Once the format has been

defined it can be applied by issuing the command "IOListFormat = Custom".

The IOListCustomFormat command takes a single text line argument that defines how each I/O event
should be represented. This argument can be made up of a mixture of text and custom tokens, as defined
in the table below. The maximum length of a IOListCustomFormat definition is 255 characters.

When the reader is outputs a custom IOList, the tokens in the custom format are replaced with the actual
values for each I/O event. You can use the short and long tokens interchangeably.

Short

Token

Long

Token

Description

%E ${EVENT} The I/O event type (textual): "DI" or "DO"

%e ${ID} The I/O event type (numeric): 1=DI, 2=DO

%T ${TIME} Time of the I/O event (textual): hh:mm:ss.xxx

%t ${MSEC} Time of the I/O event (numeric): msec since 01/01/1970

%d ${DATE} Date of the I/O event: YY/MM/DD

%D ${DATELONG} Date & Time of the I/O event: YY/MM/DD hh:mm:ss.xxx

%v ${DATA} The new (bit mask) state of the DIs or DOs

%N ${NAME} The reader's ReaderName

%H ${HOST} The reader's Hostname

%I ${IP} The reader's IP address

%M ${MAC} The reader's MAC address

IOListCustomFormat Examples
Command

Response

Command

Response

>IOListCustomFormat = The new %E value is %v.

IOListCustomFormat = The new %E value is %v.

>ios

The new DO value is 6.

The new DI value is 3.

Command

Response

Command

Response

>IOListCustomFormat = E=%E e=%e T=%T t=%t d=%d D=%D v=%v

IOListCustomFormat = E=%E e=%e T=%T t=%t d=%d D=%D v=%v

>IOList?

E=DO e=2 T=14:04:48.286 t=1169244288286 d=2007/01/19 D=2007/01/19

14:04:48.286 v=2

E=DI e=1 T=14:04:51.732 t=1169244291732 d=2007/01/19 D=2007/01/19

14:04:51.732 v=13

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

75

Clear IOList
F800 | 9900 | 9680 | 9650

The "Clear IOList" command instructs the reader to immediately clear its internal IOList.

Clear IOList Examples

Command

Response

>Clear IOList

IO List has been cleared!

IOStreamMode
F800 | 9900 | 9680 | 9650

The IOStreamMode command turns on or off the IOStream functionality. Rather than having to
continually poll the reader to determine if a digital input value has changed, you can now configure the
reader to stream digital I/O events to a TCP socket or the reader's serial port.

When IOStreamMode is on, each change to a digital input or digital output state causes the reader to
stream the event information to the IOStreamAddress (see below). Only those events given by the
IOType command (DI, DO, DIO, etc.) are streamed.

The format of the streamed data is specified by the IOStreamFormat and IOStreamCustomFormat
commands (below).

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

 If the reader is unable to successfully stream the data (TCP socket error, for
instance), the data is lost.

IOStreamMode Examples

Command

Response

>IOStreamMode?

IOStreamMode = OFF

Command

Response

>IOStreamMode = on

IOStreamMode = ON

IOStreamAddress
F800 | 9900 | 9680 | 9650

The IOStreamAddress command specifies where IOStream event data should be sent. There are two
delivery methods supported, as shown in the table below:

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

76

IOStreamAddress Description

hostname:port Send a message to a specified port on a networked machine.
The address takes the form “hostname:port.” For example,
“123.01.02.98:3450” or “listener.alientechnology.com:10002”

SERIAL Send a message to the serial port. The word “serial” is used as
the address. The word is not case sensitive.

ALR-F800: this sends the message to both the SERIAL0 (RS-
232) and SERIAL1 (USB) ports.

(ALR-F800 only)

SERIAL0

SERIAL1

Send a message to one of the ALR-F800’s serial ports:

SERIAL0 delivers the message to the RS-232 port.

SERIAL1 delivers it to the USB port.

 Note: care must be taken when streaming data to the serial port. I/O events can

happen very fast, and may have a deleterious effect on the responsiveness of the
serial port when issuing commands at the same time.

IOStreamAddress Examples

Command

Response

>IOStreamAddress?

IOStreamAddress = 10.1.0.12:4000

Command

Response

>IOStreamAddress = serial

IOStreamAddress = SERIAL

IOStreamFormat
F800 | 9900 | 9680 | 9650

The IOStreamFormat command lets you specify the formatting of IOStream data (separate from the
IOList). The command takes a text string as its argument, and can be one of the following:

Format Description

Text IOStream data is displayed as plain text messages, one I/O event per line.

Terse IOStream data is displayed as plain text messages, one I/O event per line, but
with a simplified output showing just the type of event, timestamp, and value,
with no labels.

XML IOStream data is displayed in XML text format

Custom IOStream data is displayed in the format given by IOStreamCustomFormat.

 All timestamps on the IOStream include millisecond resolution, either with .xxx after
the seconds in the human-readable form, or as the number of milliseconds since the
UNIX epoch (Jan 1, 1970).

 The default value is "Terse".

 The formatting of IOStream data is the same as for IOList data. See the description
of IOListFormat for output formats and examples of each type.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

77

IOStreamFormat Examples

Command

Response

>IOStreamFormat?

IOStreamFormat = Terse

Command

Response

>IOStreamFormat = Text

IOStreamFormat = Text

IOStreamCustomFormat
F800 | 9900 | 9680 | 9650

The IOStreamCustomFormat command allows a customized IOStream format to be defined. Once the

format has been defined it can be applied by issuing the command "IOStreamFormat = Custom".

The IOStreamCustomFormat command takes a single text line argument that defines how each I/O event
should be represented. This argument can be made up of a mixture of text and custom tokens, as defined
in the table below. The maximum length of the IOStreamCustomFormat definition is 255 characters.

When the reader outputs an IOStream event, the tokens in the custom format are replaced with the actual
values for the I/O event.

 The available custom tokens for the IOStream are the same as for IOList. See the
IOListCustomFormat description for a table of allowed tokens.

 The default IOStreamCustomFormat is "%E,%v "

IOStreamCustomFormat Examples

Command

Response

>IOStreamCustomFormat?

IOStreamCustomFormat = %E,%v

Command

Response

>IOStreamCustomFormat = %E changed to %v at %T.

IOStreamCustomFormat = %E changed to %v at %T.

IOStreamKeepAliveTime
F800 | 9900 | 9680 | 9650

When the reader sends an IOStream event message out over the network, it needs to open a TCP
socket. Opening and closing a socket entails some processor and network overhead, and if the
messages are coming out of the reader rapidly, this overhead can become a burden that hinders reader
responsiveness.

The IOStreamKeepAliveTime command sets the amount of time (in seconds) that the reader keeps its
IOStream socket open. For rapid IOStream events, it may be advantageous for the reader to hold the
socket open continuously. You do this by setting IOStreamKeepAliveTime to some value greater than the
expected time between events.

On the other hand, holding the socket open places a burden on the network. For infrequent IOStream
events, it is advantageous to leave the IOStreamKeepAliveTime small so that the socket is opened only
long enough for a single message to be sent out, and is then closed automatically after message delivery.

 Allowed Values: Integer(0..32767)

 Default Value: 30 seconds

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

78

 The reader automatically reopens a socket that has timeout the next time it needs to
send data.

IOStreamKeepAliveTime Examples

Command

Response

>IOStreamKeepAliveTime?

IOStreamKeepAliveTime = 30

Command

Response

>IOStreamKeepAliveTime = 2

IOStreamKeepAliveTime = 2

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

79

BlinkLED
F800 | 9900 | 9680 | 9650

The incredibly useful BlinkLED command allows you to cycle the reader's LED status lights between two
patterns with a specified duration for each state and the number of times to cycle. You might use this to
signal an error condition or a directive to an operator nearby, or you might use it to verify that the status
LEDs are all functioning.

BlinkLED = <LEDState1> <LEDState2> <duration> <count>

<LEDState1> and <LEDState2> are the two LED states, represented as decimal bitmasks with the
following mappings. Bit 1 is the least-significant bit.

ALR-F800 ALR-9900 ALR-9680 ALR-9650

bit 1 – CPU (red)
bit 2 – CPU (green)
bit 3 – Read
bit 4 – Sniff
bit 5 – Ant 0
bit 6 – Ant 1
bit 7 – Ant 2
bit 8 – Ant 3

bit 1 – Ant 0
bit 2 – Ant 1
bit 3 – Ant 2
bit 4 – Ant 3
bit 5 – CPU
bit 6 – Read
bit 7 – Sniff
bit 8 – Fault (red)

bit 1 – RF On
bit 2 – Read
bit 3 – Fault (red)
bit 4 – N/A
bit 5 – N/A
bit 6 – N/A
bit 7 – N/A
bit 8 – N/A

bit 1 – RF On
bit 2 – Read
bit 3 – Fault (red)
bit 4 – N/A
bit 5 – N/A
bit 6 – N/A
bit 7 – N/A
bit 8 – N/A

<duration> is the time, in milliseconds, to hold each output state. <count> is the number of times to cycle
through the two states.

 <LEDState> allowed values: Integer(0..255) (the useful maximum depends on how
many LEDs the reader has)

 <duration> allowed values: Integer(0..2500)

 <count> allowed values: Integer(0..255)

 The total duration of the BlinkLED command (2 * <duration> * <count>) cannot
exceed 25 seconds,

 No other commands may be issued while the BlinkLED command is executing.
AutoMode is suspended until the BlinkLED command finishes. The reader does not
read tags while BlinkLED is running.

BlinkLED Examples

Command

Response

// Flash all LEDs On and Off 3 times, pausing for 1 sec each time

>BlinkLED = 0 255 1000 3

BlinkLED = 0 <--> 255 (1000 msec, 3 times)

Command

Response

// Flash the fault light (ALR-9900) rapidly for 2 sec total.

>BlinkLED = 128 0 100 20

BlinkLED = 128 <--> 0 (100 msec, 20 times)

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

80

TagList Commands

TagList commands allow you to retrieve immediate listings of tags that have been read and saved by the
reader, and to assign and retrieve TagList functional parameters.

Get TagList (t)
F800 | 9900 | 9680 | 9650

You can retrieve the reader’s stored TagList with the Get TagList command.

 The maximum number of tags that can be stored in the TagList is 6000. Some reader
models also have the capability to retain some of the TagList data even over a power
outage.

 "Get TagList" and "t" can be used interchangeably.

Using the Get TagList to retrieve the stored list only once:

 If the reader is not in Autonomous Mode, the reader immediately performs a full
tag search (read and report) and displays its current internal TagList. The reply is a
multi-line response, with each line listing an active tag. If the TagList is empty, the
message “(No Tags)” is returned.

 If the reader is in Autonomous Mode, the reader just returns its current internal
TagList.

The format of the data returned by this command is specified using the TagListFormat command,
described below.

TagList Examples

Command

Response

>get TagList

Tag:8000 8004 0000 003B, Disc:2003/12/04 12:35:11, Last:2003/12/04

12:35:11, Count:3, Ant:0

Tag:8000 8004 9999 0004, Disc:2003/12/04 12:35:11, Last:2003/12/04

12:35:11, Count:3, Ant:0

Command

Response

>get TagList

(No Tags)

PersistTime
F800 | 9900 | 9680 | 9650

The PersistTime specifies the length of time a tag’s data remains in the reader’s internal list of active tags.

 Allowed Values: Integer(-1..86400)

 Default Value: -1

 Persist times are specified in seconds.

 A zero persist time (0) guarantees that tags are not stored in the TagList. However

issuing a get TagList command in Interactive Mode returns any tags immediately

found even though they won’t be stored in the TagList.

 Setting the persist time to -1 causes the history to build indefinitely until a get

TagList command is issued; at this point the TagList is returned, and then

immediately cleared. This is the default setting.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

81

The maximum number of tags that can be stored in the internal TagList is 6,000. Once this tag limit is
reached, older tag entries are replaced by newer ones. The ALR-9900+ has the additional feature of
being able to periodically store acquired tag reads to non-volatile memory, so that in the event of power
loss, those readers can reboot and come back with the same list of tag reads.

PersistTime Examples

Command

Response

>PersistTime?

PersistTime = -1

Command

Response

>PersistTime=300

PersistTime = 300

TagListFormat
F800 | 9900 | 9680 | 9650

The Get and Set TagListFormat commands specify the formatting of TagLists. The command itself takes
a text string as its argument, and can be one of the following:

Format Description

Text TagLists displayed as plain text messages, one tag ID per line.

Terse TagLists displayed as plain text messages, one tag ID per line, but just TagID,
Antenna, and ReadCount, with no labels.

XML TagLists are displayed in XML text format

Custom TagLists are displayed in the format described by TagListCustomFormat.

 Text-formatted TagLists take the following form:

Tag:E200 3411 B801 0108, Disc:2007/06/29 08:30:49, Last:2007/06/29 10:38:12,

Count:292, Ant:0, Proto:2

Tag:4461 7669 6445 2E4B, Disc:2007/06/29 10:38:13, Last:2007/06/29 10:38:13,

Count:187, Ant:1, Proto:2

 Terse-formatted TagLists take the following form:

 1115 F268 81C3 C012,0,4

 0100 0100 0002 0709,0,6

 1054 A334 54E1 7409,0,2

 The fields given in the Terse format are: TagID, ReadCount, Antenna.

 XML-formatted TagLists take the form:

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

82

 <?xml version="1.0" encoding="UTF-8"?>

 <Alien-RFID-Tag-List>

 <Alien-RFID-Tag>

 <TagID>0000 0000 0000 0000 0000 0000</TagID>

 <DiscoveryTime>2005/05/31 17:39:13</DiscoveryTime>

 <LastSeenTime>2005/05/31 17:39:13</LastSeenTime>

 <Antenna>1</Antenna>

 <ReadCount>22</ReadCount>

 <Protocol>0</Protocol>

 </Alien-RFID-Tag>

 <Alien-RFID-Tag>

 <TagID>A5A5 FFFF 8000 8004 6546 6091</TagID>

 <DiscoveryTime>2005/05/31 17:39:13</DiscoveryTime>

 <LastSeenTime>2005/05/31 17:39:13</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>3</ReadCount>

 <Protocol>1</Protocol>

 </Alien-RFID-Tag>

 <Alien-RFID-Tag>

 <TagID>3000 2141 60C0 0400 0000 6013</TagID>

 <DiscoveryTime>2005/05/31 17:39:13</DiscoveryTime>

 <LastSeenTime>2005/05/31 17:39:14</LastSeenTime>

 <Antenna>1</Antenna>

 <ReadCount>19</ReadCount>

 <Protocol>2</Protocol>

 </Alien-RFID-Tag>

 </Alien-RFID-Tag-List>

 In all cases the following information is reported per tag:

 TagID: the tag's individual ID (EPC code).

 Disc: the time the tag was first read by the reader in the current session.

 Last: the most recent time the tag was read by the reader in the current session.

 Count/ReadCount: the number of times the tag has been read in the current session.

 Ant: the antenna port number where the tag was LAST seen. For multi-static readers,
the antenna port reported is the transmit antenna.

TagListFormat Examples

Command

Response

>TagListFormat?

TagListFormat = Text

Command

Response

>TagListFormat = XML

TagListFormat = XML

TagListCustomFormat
F800 | 9900 | 9680 | 9650

The TagListCustomFormat command allows a customized TagList to be defined. Once the format has

been defined it can be applied by issuing the command "TagListFormat = Custom".

The TagListCustomFormat command takes a single text line argument that defines how each tag should
be represented on-screen. This argument can be made up of a mixture of text and tokens, as defined in
the table below. The maximum length of a custom TagList format definition is 255 characters.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

83

Custom tokens come in short and long forms. The traditional (short) tokens take the form %X, where "X"
is a single character identifying the token, and the long tokens take the form ${var_name}. Short and long
tokens may be used interchangeably.

When the RFID Reader is required to generate a TagList, the tokens and variables in the custom format
are replaced with the actual values for each tag.

The following tokens apply to all Alien readers:

Short

Tokens

Long

Tokens

Description

%i ${TAGIDW} Tag ID with a space between each pair of bytes:

 8000 00FE 8010 2AB7

- ${TAGIDB} Tag ID with a space between each byte:

 80 00 00 FE 80 10 2A B7

%k ${TAGID} Tag ID with no spaces at all:

 800000FE80102AB7

%d ${DATE1} Discovery date of tag, in format YY/MM/DD

%t ${TIME1} Discovery time of tag, in format hh:mm:ss

- ${MSEC1} Discovery date & time of tag, in milliseconds since
1/1/1970.

%D ${DATE2} Last-seen date of tag, in format YY/MM/DD

%T ${TIME2} Last-seen time of tag, in format hh:mm:ss

- ${MSEC2} Last-seen date & time of tag, in milliseconds since
1/1/1970.

%r ${COUNT} Read Count of tags, i.e., how many times the tag has been
read

%a ${TX} (Transmit) Antenna the tag was last seen at

%A ${RX} (Receive) Antenna where tag was last seen

%p ${PROTO#} Integer value indicating the tag's protocol

(0 = Class0, 1 = Class1/Gen1, 2 = Class2/Gen2)

%P ${PROTO} String representation of the tag's protocol

%l ${PCWORD} PC Word (Class1/Gen2)

%m ${RSSI} Tag RSSI measurement

- ${RSSI_MAX} The maximum RSSI value for this tag.

%N ${NAME} The reader's ReaderName

%H ${HOST} The reader's Hostname

%I ${IP} The reader's IP address

%M ${MAC} The reader's MAC address

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

84

The following tokens are supported on ALR-9000+ readers:

Short

Tokens

Long

Tokens

Description

%s ${SPEED} Tag speed (m/s) – impacts read performance

- ${SPEED_MIN} The minimum (most negative) speed measured for the tag

- ${SPEED_MAX} The maximum (most positive) speed measured for the tag

- ${SPEED_TOP} The top speed (regardless of direction) for the tag

- ${DIR} Direction: "-" (approach), "+" (recede), or "0" (stationary)

- ${G2DATA1...4} Tag data corresponding to the 1
st
, 2

nd
, 3

rd
, or 4

th

AcqG2TagData entry

- ${G2OPS} Results from all AcqG2Ops that were executed, entries
separated by vertical bars (|).

- ${G2OPS1…8} Results corresponding to 1 of the 8 numbered AcqG2Ops

- ${AUTH} Tag's Alien dynamic authentication data (includes tag
manufacturer's id code) Refer to the description of the

TagAuth command for more details.

- ${XPC} XPC Word(s) (Class1/Gen2)

- ${FREQ} Frequency the tag was acquired on (MHz)

The following tokens are supported on ALR-F800 readers:

Short

Tokens

Long

Tokens

Description

- ${G2DATA1...4} Tag data corresponding to the 1
st
, 2

nd
, 3

rd
, or 4

th

AcqG2TagData entry

- ${G2OPS} Results from all AcqG2Ops that were executed, entries
separated by vertical bars (|).

- ${G2OPS1…8} Results corresponding to 1 (of 8) of the numbered
AcqG2Ops

- ${XPC} XPC Word(s) (Class1/Gen2)

- ${FREQ} Frequency the tag was acquired on (MHz)

TagListCustomFormat Examples
Command

Response

Command

Response

>TagListCustomFormat = Here is a tag %i

TagListFormat = Here is a tag %i

>get TagList

Here is a tag 8000 0000 0000 0808

Here is a tag 102F ED3D 0303 0001

Command

Response

Command

Response

>TagListCustomFormat = Tag %k, read %r times from antenna %a

TagListFormat = Tag %k, read %r times from antenna %a

>get TagList

Tag 8000000000000808, read 3 times from antenna 0

Tag 102FED3D03030001, read 120 times from antenna 1

Command

Response

Command

Response

>TagListCustomFormat = Tag ${TAGIDW} was going ${SPEED} m/s.

TagListFormat = Tag ${TAGIDW} was going ${SPEED} m/s.

>t

Tag 8000 0000 0000 0808 was going 1.064 m/s.

Tag 102F ED3D 0303 0001 was going -0.003 m/s.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

85

Support for XPC Functionality
F800 | 9900 | 9680 | 9650

The information returned from EPC Gen2 tags, and from ISO18000-6c tags, includes a word (16 bits) of
Protocol Control information (PC word). This information includes the length of the packet, and additional
information about of the tag such as whether the User bank has information written to it, the ISO
numbering system identifier, or the EPC information bits, including a bit for tagging hazardous materials.
In addition, some Gen2 tags may have an additional word or two of information which are collectively
referred to as the eXtended Protocol Control bits (XPC). These are defined for purposes such as
identifying battery tags, indication of exceptional conditions at tags such as that they need attention
(temperature too high for temperature tags, for example).

The information available in the PC and XPC bits is standardized the EPC and ISO standards
committees. The anticipated uses and the meanings of the bits may change in the future, and other XPC
words may be defined.

The software in Alien readers will decode and present the bits from any PC and XPC words in custom tag
lists by using the ${XPC} and ${PCWORD} custom tag list format token.

For example:

Alien>TagListCustomFormat = id:%i pc:${PCWORD} xpc:${XPC}

TagListCustomFormat = id:%i pc:${PCWORD} xpc:${XPC}

Alien>TagListFormat = custom

TagListFormat = custom

Alien>t

id:E9C1 E9C2 E9C3 E9C4 E9C5 E9C6 pc:3A00 xpc:0002

Notice that the reported PC word has a value of 0x3A00 which corresponds to the EPC length of 7 words.
Since this tag has an extra XPC word, it adds 1 to the EPC length of 6 words when reporting the PC word
value.
If the EPC bank is read directly with the G2Read command the bits at the PC word location (second word
of the EPC bank) have a value of 0x3200. ('2' indicates that the XPC word is present):

Alien>g2read=1 0 0

G2Read = 14 1D 32 00 E9 C1 E9 C2 E9 C3 E9 C4 E9 C5 E9 C6

TagDataFormatGroupSize
F800 | 9900 | 9680 | 9650

The new TagDataFormatGroupSize command is used to specify the grouping of bytes when formatting
tag data. This parameter affects formatting of tag's EPC and AcqG2TagData values for Text, XML and
terse formats. It does not affect the formatting of programming-related commands, such as ProgramEPC
and G2Read.

The format is as follows:

TagDataFormatGroupSize = <group size>

where <group size> is the number of bytes in a group (0 to 2). The default value is 2.

This feature could be useful for users designing their own data parsers.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

86

TagDataFormatGroupSize Examples
Command

Response

Command

Response

Command

Response

>TagDataFormatGroupSize?

TagDataFormatGroupSize = 2

>AcqG2TagData = 1 2 2

AcqG2TagData = 1 2 2

>t

Tag:E200 9002 5214 0283 1740 60EB, Disc:2010/02/22 16:47:31.272,

Last:2010/02/22 16:47:31.272, Count:1, Ant:0, Proto:2, D1:E200 9002

Command

Response

Command

Response

>TagDataFormatGroupSize = 1
TagDataFormatGroupSize = 1

Alien>t

Tag:E2 00 90 02 52 14 02 83 17 40 60 EB, Disc:2010/02/22

16:48:17.257, Last:2010/02/22 16:48:17.257, Count:1, Ant:0,

Proto:2, D1:E2 00 90 02

Command

Response

Command

Response

>TagDataFormatGroupSize = 0
TagDataFormatGroupSize = 0

Alien>t

Tag:E200900252140283174060EB, Disc:2010/02/22 16:44:52.878,

Last:2010/02/22 16:44:52.878, Count:1, Ant:0, Proto:2, D1:E2009002

TagListAntennaCombine
F800 | 9900 | 9680 | 9650

The TagListAntennaCombine command turns on or off the antenna combine mode. When
TagListAntennaCombine is ON, the reader combines tag IDs into a single TagList even if the Ids are read
by different antennas. Setting this value to OFF forces the TagList to keep multiple copies of a tag ID for
each antenna where it is seen.

For example, reading a tag that is visible to both antenna 0 and antenna 1, with an AntennaSequence of
"0, 1", would give the following TagList:

 TagListAntennaCombine = ON

 Tag:8000 8004 2665 8426, Count:2, Ant:1

 TagListAntennaCombine = OFF
 Tag:8000 8004 2665 8426, Count:1, Ant:0

 Tag:8000 8004 2665 8426, Count:1, Ant:1

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

TagListAntennaCombine Examples

Command

Response

>TagListAntennaCombine?

TagListAntennaCombine = ON

Command

Response

>TagListAntennaCombine = off

TagListAntennaCombine = OFF

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

87

TagListMillis
F800 | 9900 | 9680 | 9650

Standard TagList data includes timestamps with second-resolution, but the reader actually records
timestamps internally with millisecond-resolution. You use the TagListMillis command to enable the
display of the millisecond data in the TagList timestamps.

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

 When TagListMillis is set to "On", the TagList timestamps are of the form:
YYYY/MM/DD HH:MM:SS.mmm

 When TagListMillis is set "Off", the TagList timestamps are of the form:
YYYY/MM/DD HH:MM:SS

TagListMillis Examples

Command

Response

Command

Response

>TagListMillis?

TagListMillis = On

>TagList?

Tag:DEAD BEEF CAFE 8042, Disc:2006/05/30 12:11:57.388,

Last:2006/05/30 12:11:57.388, Count:1, Ant:0, Proto:1

Command

Response

Command

Response

>TagListMillis = Off

TagListMillis = Off

>TagList?

Tag:DEAD BEEF CAFE 8042, Disc:2006/05/30 12:12:02,

Last:2006/05/30 12:12:02, Count:1, Ant:0, Proto:1

Clear TagList
F800 | 9900 | 9680 | 9650

The "Clear TagList" command instructs the reader to immediately clear its internal TagList.

Clear TagList Examples

Command

Response

>Clear TagList

TagList has been cleared!

TagStreamMode
F800 | 9900 | 9680 | 9650

The TagStreamMode command turns on or off the TagStream functionality. Rather than having to
continually poll the reader to fetch tag data, or rely on the NotifyMode functions, which entail some
latency, you can now configure the reader to stream Tag read events to a TCP socket or the reader's
serial port.

When TagStreamMode is on, each and every tag read causes the reader to stream the tag information to
the TagStreamAddress (see below). There is no buffering of data, or combining of data from multiple
antennas, as in the TagList. If a single inventory sees the same tag three times, it streams three tag read
events.

The format of the streamed data is specified by the TagStreamFormat and TagStreamCustomFormat
commands (below).

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

88

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

 If the reader is unable to successfully stream the data (TCP socket error, for
instance), the stream data is lost.

TagStreamMode Examples

Command

Response

>TagStreamMode?

TagStreamMode = OFF

Command

Response

>TagStreamMode = on

TagStreamMode = ON

TagStreamAddress
F800 | 9900 | 9680 | 9650

The TagStreamAddress command specifies where TagStream event data should be sent. There are two
delivery methods supported, as shown in the table below:

TagStreamAddress Description

hostname:port Send a message to a specified port on a networked machine.
The address takes the form “hostname:port.” For example,
“123.01.02.98:3450” or “listener.alientechnology.com:10002”

SERIAL Send a message to the serial port. The word “serial” is used as
the address. The word is not case sensitive.

ALR-F800: this sends the message to both SERIAL0 (RS-232)
and SERIAL1 (USB) ports.

(ALR-F800 only)

SERIAL0

SERIAL1

Send a message to one of the ALR-F800’s serial ports:

SERIAL0 delivers the message to the RS-232 port.

SERIAL1 delivers it to the USB port.

 Note: care must be taken when streaming data to the serial port. Tag read events

can happen very fast, and may have a deleterious effect on the responsiveness of
the serial port when issuing commands at the same time.

TagStreamAddress Examples

Command

Response

>TagStreamAddress?

TagStreamAddress = 10.1.0.12:4001

Command

Response

>TagStreamAddress = serial

TagStreamAddress = SERIAL

TagStreamFormat
F800 | 9900 | 9680 | 9650

The TagStreamFormat command lets you specify the formatting of TagStream data (separate from the
TagList). The command takes a text string as its argument, and can be one of the following:

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

89

Format Description

Text TagStream data is displayed as plain text messages, one Tag event per line.

Terse TagStream data is displayed as plain text messages, one Tag event per line, but
with a simplified output showing just the TagID, Antenna, and ReadCount, with
no labels.

XML TagStream data is displayed in XML text format

Custom TagStream data is displayed in the format given by TagStreamCustomFormat.

 The default value is "Terse".

 The formatting of TagStream data is the same as for TagList data. See the
description of TagListFormat for output formats and examples of each type.

TagStreamFormat Examples

Command

Response

>TagStreamFormat?

IOStreamFormat = Terse

Command

Response

>TagStreamFormat = Text

TagStreamFormat = Text

TagStreamCustomFormat
F800 | 9900 | 9680 | 9650

The TagStreamCustomFormat command allows a customized TagStream format to be defined. Once the

format has been defined it can be applied by issuing the command "TagStreamFormat = Custom".

The TagStreamCustomFormat command takes a single text line argument that defines how each Tag
event should be represented. This argument can be made up of a mixture of text and custom tokens, as
defined in the table below. The maximum length of a TagStreamCustomFormat definition is 255
characters.

When the reader outputs a TagStream event, the tokens and variables in the custom format are replaced
with the actual values for the Tag event.

 The available custom tokens for the TagStream are the same as for TagList. See the
TagListCustomFormat description for a table of allowed tokens.

 The default TagStreamCustomFormat is "%k "

TagStreamCustomFormat Examples

Command

Response

>TagStreamCustomFormat?

TagStreamCustomFormat = %k

Command

Response

>TagStreamCustomFormat = Tag:%i Ant:%a

TagStreamCustomFormat = Tag:%i Ant:%a

TagStreamKeepAliveTime
F800 | 9900 | 9680 | 9650

When the reader sends a TagStream event message out over the network, it needs to open a TCP
socket. Opening and closing a socket entails some processor and network overhead, and if the
messages are coming out of the reader rapidly, this overhead can become a burden that hinders reader
responsiveness.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

90

The TagStreamKeepAliveTime command sets the amount of time (in seconds) that the reader keeps its
TagStream socket open. For rapid TagStream events, it may be advantageous for the reader to hold the
socket open continuously. You do this by setting TagStreamKeepAliveTime to some value greater than
the expected time between events.

On the other hand, holding the socket open places a burden on the network. For infrequent TagStream
events, it is advantageous to leave the TagStreamKeepAliveTime small so that the socket is opened only
long enough for a single message to be sent out, and is then closed automatically after message delivery.

 Allowed Values: Integer(0..32767), default is 30

 The reader automatically reopens a socket that has timeout the next time it needs to
send data.

StreamHeader
F800 | 9900 | 9680 | 9650

When the reader initially opens a TCP socket for an IOStream or TagStream, it optionally outputs some
header information, which serves to identify the reader to the receiving application, and specifies whether
the stream is a TagStream or IOStream.

 Allowed Values:"ON" | "OFF". default is “ON”

 The StreamHeader command applies to both the IOStream and TagStream.

 The TagStream header is the same as the IOStream header except for the first line.

 The StreamHeader is only sent at the start of a socket connection. As long as the
socket remains open, no further headers are sent. If the socket closes and is
reopened, a new StreamHeader is sent.

 The StreamHeader is included when streaming to the serial port.

Following is an example header from the start of an IOStream. This format is used for the Text, Terse,
and Custom IOStreamFormats. XML stream headers contain the same data, wrapped in XML tags.

#Alien RFID Reader I/O Stream\r\n

#ReaderName: Alien RFID Reader\r\n

#Hostname: alien-10116A\r\n

#IPAddress: 192.168.1.100\r\n

#CommandPort: 23\r\n

#MACAddress: 00:80:66:10:11:6A\r\n

#Time: 2006/12/18 11:19:26\r\n\0

TagStreamKeepAliveTime Examples

Command

Response

>TagStreamKeepAliveTime?

TagStreamKeepAliveTime = 30

Command

Response

>TagStreamKeepAliveTime = 2

TagStreamKeepAliveTime = 2

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

91

StreamHeader Examples

Command

Response

>StreamHeader?

StreamHeader = ON

Command

Response

>StreamHeader = off

StreamHeader = OFF

TagStreamServer
F800 | 9900 | 9680 | 9650

TagStreamServer is a feature that streams tag data to you, but rather than the reader initiating a TCP
connection to your listener (see TagStreamMode), you connect to the reader to receive the streamed
data. As long as you are connected to the TagStreamServer, you will see every tag that the reader sees.

TagStreamServer has the added benefit of allowing for multiple concurrent connections, so more than
one of your processes can monitor the reader for tag reads at the same time.

The format of the TagStreamServer command is as follows:

TagStreamServer = <maxConnections> [<port> [<scope>]]

Where:

<maxConnections> How many concurrent connections will be allowed (from 0 up to 16).

<port> (optional) The TCP port where you connect to the TagStreamServer (default is 3333).

<scope> (optional) Scope specifies whether the TagStreamServer will accept connections from

“any” source (the default), or to “local” sources, such as a custom ruby
application running directly on the reader.

 TagStreamServer uses the format described by TagStreamFormat. No

StreamHeader is ever sent.

 When setting TagStreamServer, you can leave off the <scope> or both the <port>

and <scope> - the reader will use the current values if you do leave them off.

 <maxConnections> is always required, and is the way that you turn off the

TagStreamServer - by setting <maxConnections> to 0.

 The command, “TagStreamServer #?” will report how many connections are currently
being made to the TagStreamServer.

TagStreamServer Examples

Command

Response

>TagStreamServer?

TagStreamServer = 0 3333 any

Command

Response

// Allow 1 connection, on port 4444, from only local sources

>TagStreamServer = 1 4444 local

TagStreamServer = 1 4444 local

Command

Response

// Update current setting to allow 3 connections

>TagStreamServer = 3

TagStreamServer = 3 4444 local

Command

Response

// Turn off TagStreamServer

>TagStreamServer = 0

TagStreamServer = 0 4444 local

Command

Response

// Ask for the number of current connections

>TagStreamServer #?

TagStreamServer = 1

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

92

Macro Commands

The reader supports on-board stored "macros", which are named sequences of commands that may be
run as a group with a single reader command. Macros are text files with a .arm (Alien Reader Macro)
extension that can contain reader commands, empty lines, and comment lines (beginning with "#" or "//").

 Macro names are inferred from the macro's filename (minus the .arm extension), so
they must adhere to certain restrictions – only alphanumeric characters (a-z, A-Z, 0-
9) are allowed.

 Macro names are case-sensitive, so "myMacro" is distinct from "mymacro".

 After the reader starts up, it automatically runs any stored macro named "default".
The reader ignores a "reboot" command within the "default" macro.

For example, a definition of a macro named "myMacro":
myMacro.arm

I made it sometime in January

Start out at the beginning

FactorySettings

Set the readername

ReaderName = MyTestReader

Set up AutoMode

AutoStartTrigger = 1 2

AutoMode = on

Macros may be created externally and then uploaded to the reader through the web interface, or they
can be created on-the-fly from the reader's command line interface with a handy macro recording feature.
The ALR-F800 provides powerful macro management capabilities in the web interface, including the
ability to view and even edit your macros.

Once macros are loaded onto the reader, they persist through rebooting cycles and even reader
upgrades. Macros can be listed, viewed, run, or removed from the reader with the new set of Macro
commands. When a macro is run, the reader executes each line in the macro file as if you had entered it
explicitly on the command line.

MacroList
F800 | 9900 | 9680 | 9650

You use the MacroList command so see a list of all the macros currently residing in the reader, one
macro name per line.

 If there are no macros installed, the reader responds with, "(No Macros Installed)".

 Two example macros, named "example1" and "example2" may already be found in
your reader, and may be updated in future releases. If you create your own macros
with these same names, they may be replaced during an upgrade.

MacroList Examples

Command

Response

>MacroList

example1

example2

Command

Response

>MacroList

(No Macros Installed)

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

93

MacroView
F800 | 9900 | 9680 | 9650

You use the MacroView command, followed be the name of an installed macro, to view the contents of a
macro.

 If the specified macro name does not correspond to an installed macro, then the
reader responds with, "Error 28: Unknown error. There is no readable macro with that
name."

MacroView Examples
Command

Response

>MacroView example1

// Example 1 Macro

// Look for all types, small number of tags expected

RFModulation = STD

TagType = 31

AcquireMode = Global Scroll

// We'll want to see a notification when new tags are seen

NotifyAddress = 10.10.82.50:3600

NotifyTrigger = Add

// Set up AutoMode to run very quickly

AutoModeReset

PersistTime = 10

AutoStopTimer = 100

// Go!

NotifyMode = On

AutoMode = On

Command

Response

>MacroView foo

Error 28: Unknown error. There is no readable macro with that name.

MacroDel
F800 | 9900 | 9680 | 9650

MacroDel, followed by the name of an installed macro, permanently deletes the named macro.

 No warning or second chance is given.

 If the specified macro name does not correspond to an installed macro, then the
reader responds with, "Error 28: Unknown error. Unable to delete - there is no macro
with that name."

MacroDel Examples

Command

Response

>MacroDel example1

Macro deleted!

Command

Response

>MacroDel foo

Error 28: Unknown error. Unable to delete - there is no macro with

that name.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

94

MacroDelAll
F800 | 9900 | 9680 | 9650

MacroDelAll permanently deletes all of the installed macros.

 No warning or second chance is given.

MacroDelAll Example

Command

Response

>MacroDelAll

All macros deleted!

MacroRun
F800 | 9900 | 9680 | 9650

MacroRun, followed by the name of an installed macro, executes the commands given in the named
macro. When a macro is run, the reader scans the associated .arm file and executes each of the
contained within (skipping empty lines, and lines beginning with "#" or "//").

You should take care to ensure that the list of commands in the macro is sufficient to bring a reader from
any arbitrary configuration to the desired state. For instance, it may not be sufficient to just include the
command, "AutoMode = On", without first explicitly setting the other AutoMode properties.

 As the reader executes each line of the macro, it displays the command being
issued, but not the response to each command.

 Upon successful execution of a macro, the reader responds with, "Macro Run
Successfully".

 If the specified macro name does not correspond to an installed macro, then the
reader responds with, "Error 28: Unknown error. There is no readable macro with that
name."

 If any command within a macro generates an error condition, the reader responds
with a descriptive message and halts further execution of the macro. The offending
line is included in the error response.

 After the reader starts up, it automatically runs any stored macro named "default".
The reader ignores a "reboot" command within the "default" macro.

MacroRun Examples
Command

Response

>MacroRun example1

RFModulation = STD

TagType = 31

AcquireMode = Global Scroll

NotifyAddress = 10.10.82.50:3600

NotifyTrigger = Add

AutoModeReset

PersistTime = 10

AutoStopTimer = 100

NotifyMode = On

AutoMode = On

Macro Run Successfully

Command

Response

>MacroRun macro1

ExternalOutput = foo

Error 28: Unknown error. Macro error handling line: ExternalOutput

= foo

Command

Response

>MacroRun foo

Error 28: Unknown error. There is no readable macro with that name.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

95

On ALR-F800 readers, you can supply additional arguments to the MacroRun command, and those string
arguments will be substituted within your macro wherever you have a $1, $2, etc. This feature allows you
to write generic macros that can be tuned/customized at the time the macro is run.

For instance, you might have a macro that configures a TagStreamAddress and NotifyAddress, but you
might want to change the IP address or TCP ports at a later time. Rather than modifying your macro and
uploading the new one to each of your readers, you could create a generic macro on your readers, with
$1, $2, and $3 placeholders for the actual IP address of your PC and separate stream and notify ports,
and then provide the actual value in the MacroRun command itself.

For example, running the following reader command:

MacroRun config 10.10.82.50 2222 3333

with this “config” macro already loaded:
NotifyAddress = $1:$2

TagStreamAddress = $1:$3

results in the following command being issued, after variable substitution has taken place:
NotifyAddress = 10.10.82.50:2222

TagStreamAddress = 10.10.82.50:3333

MacroStartRec
MacroStopRec
F800 | 9900 | 9680 | 9650

MacroStartRec, followed by a macro name, opens a new macro file based on the supplied name and
writes to this macro file all of the subsequent commands that you enter. Commands are recorded until
you issue the MacroStopRec command or another MacroStartRec command. The newly-created macro is
then available for use – just as if you had created it externally and uploaded it.

The response to the MacroStartRec command is an acknowledgment with brief instructions on how to
proceed.

 Recording a macro replaces any other macro with the same name.

 While recording, the "Alien>" prompt changes to "Alien>R>" to indicate you are in
recording mode.

 Macro names are restricted to only the alphanumeric characters – a-z, A-Z, 0-9.

 It is not possible to run a macro within another macro.

MacroStartRec & MacroStopRec Examples
Command

Response

Command

Response

>MacroStartRec recordedMacro1

MacroStartRec = Recording a new macro. Enter commands, then use

MacroStopRec to stop.

Alien>R>ReaderName = Recorded Macro 1

ReaderName = Recorded Macro 1

Command

Response

Command

Response

Command

Response

Alien>R>MacroStopRec

MacroStopRec = Success!

Alien>MacroList

example1

example2

recordedMacro1

Alien>MacroView recordedMacro1

ReaderName = Recorded Macro 1

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

96

MacroCopy
F800 | 9900 | 9680 | 9650

MacroCopy makes a copy of an existing macro. You specify the name of the original macro, followed by
the name of the new copy. This will overwrite any macro that might already exist with that new name.

MacroCopy Examples
Command

Response

Command

Response

Command

Response

>MacroList

example1

example2

example3

>MacroCopy example1 myNewMacro

Macro copied!

>MacroList

example1

example2

example3

myNewMacro

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

97

Acquire Commands

Acquire commands allow you to configure the reader's parameters that govern how it utilizes the various
air protocols to best read a particular tag population.

AcquireMode
F800 | 9900 | 9680 | 9650

When the reader is called upon to read a tag it does so using the current AcquireMode. Currently the
allowable modes are as follows:

AcquireMode Description

Inventory Perform full inventory of multiple tags (recommended)

Global Scroll Perform fast search for single tag (not recommended)

The default setting is Inventory. For a detailed description of the different modes, please refer to the
earlier chapter titled "Tag Fundamentals". Global Scroll is generally not recommended.

INVENTORY
The Inventory acquire mode performs a full anti-collision search on tags in the reader’s field of view. This
method locates and distinguishes multiple tags in front of the reader at the same time.

GLOBAL SCROLL
The Global Scroll acquire mode instructs the reader to read a single tag repeatedly. This is a very fast tag
reading method that is most effective when only one tag at a time is expected to be within reader range,
as in conveyor belt applications. Under such circumstances, the performance for single tag reading is
considerably faster than repeatedly doing a full tag search using the Inventory mode.

NOTE: If multiple tags are in range of the reader when this mode is used, the reader either selects one of
the tags (usually the “strongest’” or “loudest”) to read and report, or reads none of the tags.

AcquireMode Examples

Command

Response

>AcquireMode = Global Scroll

AcquireMode = Global Scroll

Command

Response

>AcquireMode = Inventory

AcquireMode = Inventory

TagType
F800 | 9900 | 9680 | 9650

All currently shipping Alien RFID readers support EPCglobal Class 1 / Gen 2 air protocol, and the only
allowed TagType value is 16.

TagType Examples

Command

Response

>TagType = 16

TagType = 16

Command

Response

>TagType?

TagType = 16

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

98

AcqG2Cycles
F800 | 9900 | 9680 | 9650

AcqG2Cycles takes a single integer parameter between 1 and 255. It is the number of acquisition cycles
that are performed each time the reader scans for Class1 / Gen2 tags.

Note: While this attribute has a maximum value of 255 (as do the other acquisition settings), setting them
to high values can result in very long acquisition times, which may cause the reader to appear non-
responsive. For example, setting both AcqG2Cycles and AcqG2Count to 255 causes the reader to
perform more than 65,000 acquisitions when it is directed to look for Class1 / Gen2 tags.

The AcqG2Cycles parameter controls the "outer loop" of the Class1 / Gen2 acquisition cycle, described in
the "Tag Reading Fundamentals" chapter. Its value has a significant impact on the time the reader takes
to perform each scan for tags.

 Allowed Values: Integer(0..255)

 Default Value: 1

 Read chapter 3 for more information on how this parameter affects tag inventories.

AcqG2Cycles Examples

Command

Response

>AcqG2Cycles?

AcqG2Cycles = 1

Command

Response

>AcqG2Cycles = 2

AcqG2Cycles = 2

AcqG2Count
F800 | 9900 | 9680 | 9650

AcqG2Count takes a single integer parameter between 1 and 255. It is the number of reads that are
performed in each Class1 / Gen2 acquisition cycle.

For example, if AcqG2Count is set to 10, then ten acquisition commands are issued during each
acquisition cycle.

 Allowed Values: Integer (0..255)

 Default Value: 1

 Chapter 3 provides details on how this parameter affects tag inventories.

AcqG2Count Examples

Command

Response

>AcqG2Count = 10

AcqG2Count = 10

Command

Response

>AcqG2Count?

AcqG2Count = 10

AcqG2Q
F800 | 9900 | 9680 | 9650

AcqG2Q takes a single integer parameter between 0 and 7. It is the starting "Q" value used to tune the
performance of the Class1/Gen2 air protocol. For example, if AcqG2Q is set to 3, then the reader starts
looking for tags with Q = 3. The reader may adjust the active Q value up or down during an inventory (not
when using AcquireMode=Global Scroll), but always starts with this value.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

99

Small Gen2 tag populations benefit from a small Q value (0-1), while larger Gen2 tag populations benefit
from a higher Q value (2-5).

 Allowed Values: Integer (0..7)

 Default Value: 3

 Read chapter 3 for more information on how this parameter affects tag inventories.

AcqG2Q Examples

Command

Response

>AcqG2Q = 1

AcqG2Q = 1

Command

Response

>AcqG2Q?

AcqG2Q = 1

AcqG2QMax
F800 | 9900 | 9680 | 9650

During Gen2 inventories, the reader starts off with a Q value equal to AcqG2Q, but then increases or
decreases the Q value according to how many tags it is finding in the field. The AcqG2QMax allows you
to place an upper limit on the sliding Q value.

 Allowed Values: Integer(0..15)

 Default Value: 7

AcqG2QMax Examples

Command

Response

>AcqG2QMax?

AcqG2QMax = 7

Command

Response

>AcqG2QMax = 3

AcqG2QMax = 3

AcqG2Select
F800 | 9900 | 9680 | 9650

AcqG2Select takes a single integer parameter between 0 and 255. It is the number of SELECT
commands issued at the start of each Class1/Gen2 inventory cycle, used to tune the performance of the
Class1/Gen2 air protocol.

At the start of each G2 inventory cycle, the reader issues a SELECT command, which serves to place
tags matching the current mask into the "un-inventoried" state, similar to a WAKE command in
Class1/Gen1. The AcqG2Select command allows you to specify whether or not to issue SELECT
commands, and how many. If no Selects are issued, then your AcqG2Mask will have no effect.

When attempting to inventory extremely large, static tag populations, it may be helpful to disable
SELECTs, so that easy-to-read tags remain in the inventoried state, allowing the reader to focus on the
hard-to-read tags.

 Allowed Values: Integer(0..255)

 Default Value: 1

 Setting AcqG2Select = 0 causes the reader to not issue any SELECTs.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

100

 Read chapter 3 for more information on how this parameter affects tag inventories.

AcqG2Select Examples

Command

Response

>AcqG2Select?

AcqG2Select = 1

Command

Response

>AcqG2Select = 0

AcqG2Select = 0

AcqG2Session
F800 | 9900 | 9680 | 9650

AcqG2Session takes a single integer parameter between 0 and 3. It is the inventory session used by the
reader when acquiring Class1/Gen2 tags.

The Class1/Gen2 protocol allows tags to maintain an "inventoried state" for each of four sessions,
numbered 0 through 3. Theoretically, multiple readers, each operating on different sessions, can
simultaneously interrogate the same population of tags (in practice, though, tags tend to operate best
when only one reader at a time is transmitting). The AcqG2Session command specifies which session the
reader operates on. Another reason to use different sessions is that tags maintain the "inventoried" state
for various "persistence" times, which can be helpful for different use cases.

G2 Session Nominal Persistence

0
Tag energized: Indefinite

Tag not energized: None

1
Tag energized: 500 ms – 5 sec

Tag not energized: 500 ms – 5 sec

2
Tag energized: Indefinite

Tag not energized: > 2 sec

3
Tag energized: Indefinite

Tag not energized: > 2 sec

 The default value for AcqG2Session is 1.

 Read chapter 3 for more information on how this parameter affects tag inventories.

AcqG2Session Examples

Command

Response

>AcqG2Session?

AcqG2Session = 1

Command

Response

>AcqG2Session = 2

AcqG2Session = 2

G2Wake
F800 | 9900 | 9680 | 9650

The G2Wake command issues a Gen2 "Select" command to the field of tags. You can optionally specify
the number of selects to issue. This command can be useful when tags are inventoried in long sessions
(2 or 3) with no selects during the inventory, leaving the tags unresponsive to inventories to long periods
of time. Issuing a G2Wake command directs those tags to participate again in the next inventory round.

If you follow the G2Wake command with an integer between 1 and 255, the reader issues that many
Select commands.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

101

G2Wake Examples

Command

Response

>G2Wake

OK

Command

Response

>G2Wake 10

OK

AcqG2Mask
F800 | 9900 | 9680 | 9650

The AcqG2Mask command allows you to specify the mask used when inventorying Class1/Gen2 tags.
Masks are important in both addressing tags and interrogating them. For a detailed description of masks,
please refer to the earlier chapter entitled "Tag Reading Fundamentals".

The AcqG2Mask command in its basic form takes four parameters:

 memory bank to mask on (1-3)

 bitPtr into the memory bank, as a decimal number (0-2097151)

 bitLen of mask, as a decimal number (0-255)

 array of Hex Bytes separated by white spaces

The AcqG2Mask command requires the bank field, which is restricted to banks 1-3 (masking in the bank
0 is not permitted by the G2 protocol).
 G2 bank 0 - RESERVED (not maskable)
 G2 bank 1 - EPC (CRC + PC + EPC)
 G2 bank 2 - TID (Tag identifier)
 G2 bank 3 - USER (user-specified data, not supported by all tags)

You may optionally specify up to four separate Class1/Gen2 masks using this command. Only those tags
matching all of the requested masks participate in an inventory. If the AcqG2MaskAction is "exclude",
then only those tags matching none of the requested masks participates in an inventory. Each mask entry
is separated from the previous entry with a vertical bar (|).

Compatibility Note:
The older AcqMask (or just "Mask") commands are still present for backward compatibility reasons. Using
the older AcqMask or Mask commands (which only act on the EPC bank, and always start at the
beginning of the EPC data) will still work, and the AcqG2Mask parameter will then report the equivalent
Gen2-style mask. Similarly, setting the AcqG2Mask will also set the AcqMask and Mask parameters to
the corresponding mask value, but only if the AcqG2Mask refers to a valid portion of EPC data (not the
CRC or PC words). It is therefore possible to have a valid AcqG2Mask, but a Mask/AcqMask of zero (for
example, if the AcqG2Mask is on a non-EPC bank). The reader will always use the AcqG2Mask settings.

 Setting the AcqG2Mask = 0 (or “All”) addresses all Gen2 tags currently in the RF
field.

 The data bytes given must supply at least the number of bits given by bitLen.

 Mask data is read from the given bytes from MSB to LSB, so if the bitLen doesn't fall
on an 8-bit boundary, the remaining bits (in the last byte of data) must be the most-
significant bits.

 The special case where bitLen=0 (you give a mask that has zero length) causes tags
to respond only if the memory location pointed to by bitPtr is a valid memory location.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

102

AcqG2Mask Examples

Command

Response

// Clearing the AcqG2Mask

>AcqG2Mask = 0

AcqG2Mask = 00

Command

Response

// Mask for any tag with EPC starting with "03"

>AcqG2Mask = 1, 32, 8, 03

AcqG2Mask = 1 32 8 03

Command

Response

// Mask for only Alien tags (TID bank, byte #3=0x34

>AcqG2Mask = 2, 16, 8, 34

AcqG2Mask = 2 16 8 34

Command

Response

// Mask only tags with User memory (zero-length mask, no data!)

>AcqG2Mask = 3, 0, 0

AcqG2Mask = 3 0 0

Command

Response

// Mask only tags starting with "DE", with User

// memory (multiple masks)

>AcqG2Mask = 1, 32, 8, DE | 3, 0, 0

AcqG2Mask = 1 32 8 DE|3 0 0

AcqG2MaskAction
F800 | 9900 | 9680 | 9650

The Class1/Gen2 protocol allows masks to be inclusive (only tags matching the mask respond) or
exclusive (only tags not matching the mask respond). If you are using multiple masks, the reader will
automatically use the appropriate Gen2 actions under the hood to get the masks do what you want, or
you can use an extended version of the AcqG2MaskAction command and give all of the Gen2 protocol
details yourself.

If you choose to specify the mask actions yourself, then the actions are listed (separated by vertical bars,
‘|’) in such a way that the first action in the list corresponds to the first mask in the list of masks, and so
on. When using this “state aware” masking, the actions that you specify can either be numeric (0-7) or
textual (A-, AB, -B, etc.). Extra action entries without corresponding masks will be ignored, and extra
mask entries without corresponding actions will continue to use the last action in the list.

The mask action indicates what you want to do with the “inventoried” flag in the tag (move it to the A
state, move it to the B state, leave it alone, or swap its state), for those tags that match the mask, as well
as those tags that don’t match the mask. The mask can change the “inventoried” flag for a completely
different Session than is currently being used, and you can even restrict each mask to only operate on
specific antennas.

The allowed values for AcqG2MaskAction are:
 Up to 4 |-separated values consisting of:

 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 - Actions defined by C1G2 – see below

 AB | A- | -B | s- | BA | B- | -A | -s - Textual equivalents to numeric values.

 Or one of:
 “Include” – same as “0 |1 |1 |1” or “AB | A- | A- | A-“
 “Exclude” – same as “4 | 5 | 5 | 5” or “BA | B- | B- | B-“

Remember, “move to A” generally means the tag will be ready to participate in the inventory, and “move
to B” means the tag will not participate in the inventory. If you’ve changed the AcqG2Target to something
other than “A”, then your inventories will behave differently.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

103

C1G2
Action

Text
Version

Description of Action

Matching Tags Non-Matching Tags

0 AB assert SL or InventoriedA deassert SL or InventoriedB

1 A- assert SL or InventoriedA do nothing

2 -B do nothing deassert SL or InventoriedB

3 s- negate SL or Inventoried AB do nothing

4 BA deassert SL or InventoriedB assert SL or InventoriedA

5 B- deassert SL or InventoriedB do nothing

6 -A do nothing assert SL or InventoriedA

7 -s do nothing negate SL or Inventoried A B

You can use any combination of numeric or textual versions of the actions. The special values “Include”
and “Exclude” correspond to the following numeric and textual values:

Special
Action

Numeric
Version

Textual
Version Description

Include 0|1|1|1 AB|A-|A-|A-

On first mask, select all matching and
deselect all non-matching. For all
subsequent masks, select matching and
leave non-matching alone

Exclude 4|5|5|5 BA|B-|B-|B-

On first mask, deselect all matching and
select all non-matching tags. For all
subsequent masks, deselect matching and
leave non-matching alone.

Since the last action will be used for any additional masks, the Include type could have been specified
with just “0|1” and the Exclude type could have been specified with just “4|5”. The reader will help you out
even more: if you give just a single mask action of 0, it will automatically make any other masks have an
action of 1 (not 0) – making it act like the true “Include” case. Similarly, if you give just a single mask
action of 4, the reader will automatically make any other masks have an action of 5 (not 4) – making it act
like the true “Exclude” case.

AcqG2MaskAction Examples

Command

Response

>AcqG2MaskAction?

AcqG2MaskAction = Include

Command

Response

>AcqG2MaskAction = Exclude

AcqG2MaskAction = Exclude

Command

Response

>AcqG2MaskAction = AB | A-

AcqG2MaskAction = AB | A-

Command

Response

>AcqG2MaskAction = 0 | 1

AcqG2MaskAction = 0 | 1

AcqG2MaskAntenna
F800 | 9900 | 9680 | 9650

The AcqG2MaskAntenna command accepts up to four values, with a one-to-one correspondence
between entries in the AcqG2MaskAntenna list and entries in the AcqG2Mask list. Extra antenna entries
without corresponding masks will be ignored, and extra mask entries without corresponding antennas will
continue to use the last antenna entry in the list.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

104

Each of the values in the AcqG2MaskAntenna is a bitmap of which antennas the corresponding mask will
act on. The four antennas are each selected with the first 4 low-order bits (bit #1 corresponds to antenna
0, bit #2 corresponds to antenna 1, etc.). Of course, you could theoretically pick (and OR together) any
combination of these. For instance, to cause the mask to act on all four antennas, the antenna value
would be 0x0F (00001111).

Antenna
Value

Binary
Equiv.

Selected
Antenna

0x01 00000001 Antenna 0

0x02 00000010 Antenna 1

0x04 00000100 Antenna 2

0x08 00001000 Antenna 3

 Values supplied must be a 01-0F.

 The default AcqG2MaskAntenna is 0F (all antennas).

AcqG2MaskAntenna Examples

Command

Response

>AcqG2MaskAntenna?

AcqG2MaskAntenna = 0F

Command

Response

// 1
st
 mask on Ant #0, 2

nd
 mask on Ant #1, 3

rd
 mask on Ant #2, etc.

>acqg2maskantenna = 1 | 2 | 4 | 8

AcqG2MaskAntenna = 01 | 02 | 04 | 08

AcqG2SL
F800 | 9900 | 9680 | 9650

The SL flag operates in a fashion similar to a session’s “inventoried” flag, but there is only one SL flag,
and it is accessible from any session. Mask actions can modify the state of the SL flag, and the SL flag
can also be changed during an inventory. SL flags have persistence, just like session inventoried flags
do, and most Alien tags have somewhat long SL persistence times -- on the order of minutes.

The default value of AcqG2SL is “all”, which tells the reader to ignore the SL flag when inventorying tags.
If AcqG2SL = SL, then only tags with an asserted SL flag are inventoried, and if AcqG2SL = nSL, then
only tags with a deasserted SL flag are inventoried.

 Value supplied must be “SL”, “nSL”, or “ALL”

 The default AcqG2SL is ALL.

AcqG2SL

Command

Response

>AcqG2SL?

AcqG2SL = All

Command

Response

// Only tags with SL asserted will be inventoried

>AcqG2SL = SL

AcqG2SL = SL

AcqG2AccessPwd
F800 | 9900 | 9680 | 9650

The AcqG2AccessPwd value is used when the programming operation occurs on a password-protected
Class 1/Gen2 tag. If such a tag has a non-zero Access Pwd written to it, the reader must supply the same
password in order to place the tag into the "secured" state – a state which allows locking, unlocking, and
write operations. If the provided AcqG2AccessPwd doesn't match the tag's stored Access Pwd, then
programming operations on that tag may fail with the "Access failed" error message.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

105

This command is different from the similar-sounding ProgG2AccessPwd command. ProgG2AccessPwd is
a placeholder for an Access Pwd value to be written to the tag, whereas the AcqG2AccessPwd provides
the tag's current Access Pwd to be used when operating on a Class 1/Gen2 tag that is already password-
protected.

 Value supplied must be a 4-byte value.

 The default AcqG2AccessPwd is 00 00 00 00.

AcqG2AccessPwd Examples

Command

Response

>AcqG2AccessPwd = 1 2 3 4

AcqG2AccessPwd = 01 02 03 04

Command

Response

>AcqG2AccessPwd?

AcqG2AccessPwd = 01 02 03 04

AcqG2Target
F800 | 9900 | 9680 | 9650

When the reader inventories a Gen2 tag, it flips an A/B state flag in the tag that indicates whether that tag
has been inventoried yet. The default behavior is for the reader to "select" all tags over to the A state, and
move them to the B state as they are being inventoried.

You can change this behavior to alternatively start the tags out in the B state and move them to the A
state, or just flip-flop between the A and B states from one inventory to the next (generally producing
more redundant tag reads).

The effect that changing the AcqG2Target mode has on tag inventories depends heavily on the particular
AcqG2Session in use, read zone control, time the tags are in the field, etc. You should have a firm grasp
of the Gen2 protocol before you change this setting.

 Allowed Values: "A" | "B" | "AB".

 Default Value: "A".

AcqG2Target Examples

Command

Response

>AcqG2Target?

AcqG2Target = A

Command

Response

>AcqG2Target = AB

AcqG2Target = AB

AcqG2TagData
F800 | 9900 | 9680 | 9650

The AcqG2TagData command allows you to specify additional portions of Gen2 tag memory to fetch
during an inventory (passwords, TID, User memory, etc.). The reader fetches the additional data for each
tag it reads, and includes that data in the TagList. This can significantly impact read performance, but it is
still much faster than doing an inventory and then individually querying each tag for the desired data.

Additional tag data blocks to be fetched are specified by bank, word pointer, and word length values. Up
to four tag memory data blocks can be specified, separated by vertical bars (|). If you specify a word
length of zero, the reader performs a "zero-length read", which returns all of the memory after the word
pointer (see "G2Read", later in this document).

If the requested tag memory data block does not exist or if the reader fails to read it (for example, due to
the noise) the data block is not reported in the TagList.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

106

Setting AcqG2AccessPwd allows reading data from password protected memory banks. For example,

you can password protect sensitive data in User memory bank using the HideAlienUserBlocks

command and then read the data during inventories by setting the correct AcqG2AccessPwd password.

If any AcqG2TagData has been acquired, then that data is included automatically in the text- and XML-
formatted TagLists, prefixed with "D1", "D2", etc. labels. Tag memory data blocks can also be included in
custom-formatted TagLists by using the ${G2DATA1}, ${G2DATA2}, ${G2DATA3}, and ${G2DATA4}
tokens (refer to the TagListCustomFormat description).

 Setting up AcqG2TagData causes the reader to perform extra work while reading
tags, which may impact read performance.

 The format of each data block is the same as you use in the G2Read command, so
you can determine what G2Read command gives you the desired data, and use that
to configure AcqG2TagData.

 To disable AcqG2TagData, simply set it to 0. This is the default value.

AcqG2TagData Examples
Command

Response

>AcqG2TagData?

AcqG2TagData = 0

Command

Response

Command

Response

// Show the PC word and the 1
st
 word of the EPC (bank 1, words 1-2)

>AcqG2TagData = 1 1 2

AcqG2TagData = 1 1 2

>t

Tag:0000 0000 0000 0000 0000 0001, …, D1:3000 0000

Tag:DEAD BEEF CAFE 8042 55AA 0006, …, D1:3000 DEAD

Tag:AABB 3344 DDEE 7788 9900 1132, …, D1:3101 AABB

Command

Response

Command

Response

// Show all of User memory too

>AcqG2TagData = 1 1 2 | 3 0 0

AcqG2TagData = 1 1 2 | 3 0 0

>t

Tag:0000 0000 0000 0000 0000 0001, …, D1:3000 0000, D2:1FF1 1FF2

Tag:DEAD BEEF CAFE 8042 55AA 0006, …, D1:3000 DEAD

Tag:AABB 3344 DDEE 7788 9900 1132, …, D1:3101 AABB

// (some tags don't have User memory)

AcqG2AntennaCombine
F800 | 9900 | 9680 | 9650

The AcqG2AntennaCombine command controls how the Gen2 SELECT command is issued during the
inventory cycle.

When set to ON (the default value), the reader first issues the Gen2 SELECT command on all antennas
in the AntennaSequence, and then the proceeds with the inventory loops. This setting might be effective
in the situation when there are many tags in the field, so you would "wake them up" first and then
inventory them (with a long session - 2 or 3), so there would be no redundant reads from different
antennas.

When set to OFF, the Gen2 SELECT command is issued on each antenna as they are used. This setting
will increase number of reads which might help, for example, the conveyor/speed use cases. It also gives
better support for separate read zone use cases, where you need to that a tag passed from one
antenna's zone to the next. Each antenna gets its own chance to read the tag population. This is also
essential if you are using the Speed and Direction data on different antennas to determine a tag’s location
or direction of motion.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

107

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

AcqG2AntennaCombine Examples

Command

Response

>AcqG2AntennaCombine?

AcqG2AntennaCombine = ON

Command

Response

Command

Response

// set reader parameters

>AntennaSequence = 0 1

AntennaSequence = 0 1

>AcqG2Session = 1

AcqG2Session = 1

>TagListAntennaCombine = OFF

TagListAntennaCombine = OFF

// first, issue selects on all antennas,

// then perform an inventory on all antennas

>AcqG2AntennaCombine = ON

AcqG2AntennaCombine = ON

>t

Tag:8000 8004 2665 8426, Count:1, Ant:0

// the tag was only inventoried on the first antenna

// perform 'select-inventory' sequence on each antenna

>AcqG2AntennaCombine = OFF

AcqG2AntennaCombine = OFF

>t

Tag:8000 8004 2665 8426, Count:1, Ant:0

Tag:8000 8004 2665 8426, Count:1, Ant:1

// tag was selected and inventoried on both antennas

AcqG2Ops
F800 | 9900 | 9680 | 9650

The primary task of performing an inventory on a population of tags is to determine each tag’s unique
EPC code. You could also use the AcqG2Data command to instruct the reader to perform additional
operations during inventories, for example, read other portions of tag memory (Access & Kill passwords,
TID and USER memory banks), and report them back to you as additional data fields in the taglist.

With the new AcqG2Ops command, you can perform write, lock, and even kill operations, right in the
middle of an inventory, on multiple antennas. Additional operations support the new BlastWrite feature of
Alien Higgs4 tags, which allow you to perform those operations on an entire tag population at the same
time.

You can define up to eight separate operations, and while the reader has each tag singulated during an
inventory, it will perform the list of operations on that tag. Once the operations are done (or one of them
fails), the reader will begin communication with the next tag in the inventory, and perform the same
operations on that tag.

AcqG2Ops are numbered, from 1 to 8, and are executed in numerical order. You can skip sequence
numbers, and delete or define individual operations at any time. Once you have defined your AcqG2Ops,
you enable them in one of two ways:

1. Set AcqG2OpsMode = On
a. Default is “Off”.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

108

b. When turned on, all tag inventory operations done by the reader will execute the
AcqG2Ops: “t”, “acquire”, AutoMode running, etc.

2. Issue the new “to” (taglist ops) command, instead of “t”.
a. This executes the AcqG2Ops, even if AcqG2OpsMode=Off.
b. You can switch back and forth between “to” and “t”, to perform inventories with and

without the AcqG2Ops being executed.

ACQG2OPS COMMAND SYNTAX
The general syntax to set a particular AcqG2Op is:

 AcqG2Ops = <opsNum> <opsAction> <opsArgs>

 <opsNum> is the number for this op (1-8).

 <opsAction> indicates the name (or associated 1-byte code) of the operation action.

 <opsArgs> is the space-separated list of arguments required by the given <opsAction>.

Following is a list of operations currently supported, along with their arguments. Numeric arguments that

are supplied as hex values have the number of bytes before the argument name (e.g. <2:blockMask1>

is a two-byte hex value), otherwise they are decimal values. For details on the operation actions,
arguments, and data/results returned by each of these G2Ops, see the descriptions, following.

Gen2
Action Names Code Arguments

G2Read 01 <bank> <wordPtr> <wordCount>

G2Write 02 <bank> <wordPtr> <2n:data…> [+, -, ++]

G2Kill 03 <4:killPwd>

(reserved) 04 -

G2Lock 05 <field> <lockType>

G2BlockErase 06 <bank> <wordPtr> <wordCount>

(reserved) 07 -

G2BlockPermalock 08 <blockPtr> <2:blockMask1> [<2:blockMask2>…]

G2GetPermalock 09 <blockPtr>

Alien Gen2
Action Names Code Arguments

AlienG2UserReadlock 0A <1:blockMask>

AlienG2BlastLock 85 <field> <lockType>

AlienG2BlastErase 86 <bank> <wordPtr> <wordCount>

AlienG2BlastWrite 87 <bank> <wordPtr> <2n:data…>

AlienG2BlastBlockPermalock 88 <blockPtr> <2:blockMask1> [<2:blockMask2>…]

(reserved) 89 -

AlienG2BlastUserReadlock 8A <1:blockMask>

(reserved) 8B -

AlienG2TagStatus 8C <1:statusMask>

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

109

Where:
<bank> : 0 – 3

<wordPtr> : 0 – 2097151 (base 10)

<wordCount> : 0 – 32 (base 10)

[+, -, ++] : One of these will case the G2write to increment its data.

 + = after a successful write
 - = after a failure to write
 ++ = always
<field> : 0 (killPwd), 10 (accessPwd), 1, 2, 3 (EPC, TID, USER banks)

<lockType> : Desired lock operation:

 L or Lock
 U or Unlock
 PL or PermaLock
 PU or PermaUnlock
<blockPtr> : 0 – 4064 Used to point to a block of data in User memory

<blockMask> : Used to indicate which User blocks are/should be enabled

 1
st
 significant bit = Block #1

 2
nd

 significant bit = Block #2, etc.

 G2BlockPermaLock uses a 16-bit <2:blockMask>

 AlienG2UserReadLock uses an 8-bit <1:blockMask>

<statusMask>: Bits indicate which status values to get from the tag

 1 = request bank writeLocks (bit #1)
 2 = request User block readLocks (bit #2)
 3 = request writeLocks and readLocks (bits #1 and #2)

Because you can do so much more during an inventory, you may encounter some new
bottlenecks/restrictions than previously seen. For instance, in the USA, the reader is required to hop to a
new frequency every 400ms. This interrupts all communications with the tags and therefore forces any of
the BlastWrite operations to finish in time for the next hop. Also, tags that are inventoried have an internal
flag flipped from the A state to the B state, and since the extended inventory takes longer to perform,
some of the earlier tags placed in the B state may “fall back into” the A state. This is a natural condition of
the protocol, and depends on the AcqG2Session being used. We recommend using AcqG2Session = 2
(with a very long B persistence time) when performing tag operations with AcqG2Ops.

 When executing AcqG2Ops in an inventory, they are executed in the order of their

<opsNum>.

 …except for the AlienG2BlastXXXX operations, which are always executed last.
Since the “blast” operations require the reader to already know the list of EPCs, it is
significantly more efficient to do those operations at the end of the inventory.

 If an operation fails, subsequent AcqG2Ops for that tag will not execute. The reader
will continue the inventory with the next tag and the first configured AcqG2Ops.

 Results of these operations are obtained in the taglist be using the new ${G2Ops}
and ${G2Ops1..8} custom taglist tokens.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

110

AcqG2Ops Examples

Command

Response

Command

Response

// Set AcqG2Ops #1 (write “DEAD BEEF” to the start of USER memory)

> AcqG2Ops = 1 g2write 3 0 DE AD BE EF

AcqG2Ops = 1 g2write 3 0 DE AD BE EF

// Set AcqG2Ops #3 (lock USER bank)

> AcqG2Ops = 3 g2lock 3 lock

AcqG2Ops = 3 g2lock 3 lock

Command

Response

Command

Response

Command

Response

// Get all AcqG2Ops:

> AcqG2Ops?

1 g2write 3 0 DE AD BE EF

3 g2lock 3 lock

// See it all in the Info dump:

> i acquire

**

ACQUIRE COMMANDS

**

 …snip…

 AcqG2Ops = 1 g2write 3 0 DE AD BE EF

 AcqG2Ops = 3 g2lock 3 lock

 …snip…

// Get just AcqG2Ops #1:

> AcqG2Ops 1?

1 g2write 3 0 DE AD BE EF

Command

Response

Command

Response

// Clear AcqG2Ops #3:

> AcqG2Ops = 3

AcqG2Ops = 3

// Clear all AcqG2Ops:

> AcqG2Ops = 0

AcqG2Ops = 0

ACQG2OPS RESULTS SYNTAX
Results from AcqG2Ops operations are maintained for each tag in the reader’s TagList, and will be
included with any TagLists delivered to you that use custom formatting, including one of the new
${G2Ops} or ${G2Ops1}…${G2Ops8} custom taglist tokens.

Each result block from an AcqG2Ops has the general syntax:

<1:opsActionCode> <1:opsResultCode> [<data>]

In other words, there’s a single byte with the <opsActionCode> for the operation that was run, followed

by a single byte with the result code, followed by any data that may have been requested from the

operation (g2read, g2getpermalock, alieng2tagstatus, etc.). The <opsActionCode> is the same code

give in the list of AcqG2Ops actions, above.

The <opsResultCode> for a successful operation is 00 - anything else is an error code corresponding

to one of the (hex) DSP error codes listed in appendix F of this Reader Interface Guide.

The <data> returned, if any, depends on the specific AcqG2Ops action that was executed.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

111

G2READ (0X01) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2Read operation performs a low-level read of any readable portion of tag memory. You have to
specify the bank, starting word to be read, and how many words to read back. If you ask the reader to
read zero words, the reader will read all the data remaining in the bank (if the tag supports this feature).

AcqG2Ops = <opsNum> G2Read <bank> <wordPtr> <wordCount>

AcqG2Ops = <opsNum> 01 <bank> <wordPtr> <wordCount>

// Read the first three words of USER memory

AcqG2Ops = 1 G2Read 3 0 3

Note that a locked AccessPwd or KillPwd, or read-locked USER memory, cannot be read unless you
provide the correct AcqG2AccessPwd.

The <data> in the AcqG2Ops result is one or more blocks of hex data, formatted according to the
TagDataFormatGroupSize setting (0=compressed hex, 1=bytes, 2=words).

// Successful G2Read result

01 00 FEED FACE BEEF

G2WRITE (0X02) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2Write operation performs a low-level write to any writeable portion of tag memory. Data that is
write-locked can only be written if you supply the correct AcqG2AccessPwd, and data that is
PermaLocked cannot be written at all. You specify the bank, starting word pointer to write, followed by the
data to be written, and an optional increment symbol.

AcqG2Ops = <opsNum> G2Write <bank> <wordPtr> <2n:data…> [+, -, ++]

AcqG2Ops = <opsNum> 02 <bank> <wordPtr> <2n:data…> [+, -, ++]

// Write a kill password

AcqG2Ops = 1 G2Write 0 0 DE AD DE AD

// Write an incrementing EPC

AcqG2Ops = 1 G2Write 1 2 00 00 00 00 00 00 00 00 00 00 +

If you choose to auto-increment the data, the AcqG2Ops will continuously keep track of the next value to
write, so if you stop and restart the reader’s inventories, it will continue on where it left off. You should
take care to avoid programming many tags with exactly the same EPC code, since further operations on
those tags will be difficult due to the reader’s inability to tell them apart.

The <data> in the AcqG2Ops result for a G2Write is just the result code if no incrementing was done, but
will contain the actual data written if incrementing is enabled. That written hex data is formatted according
to the TagDataFormatGroupSize setting (0=compressed hex, 1=bytes, 2=words). When the G2Write
involves incrementing, the command code changes from 0x02 to 0x82.

// Successful G2Write result (non-incrementing)

02 00

// Successful G2Write result (incrementing)

82 00 0000 0000 0000 0000 0000 01F3

G2KILL (0X03) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2Kill operation completely disables a tag, preventing it from working in future inventories. In order to
kill a tag, it must already have a non-zero Kill Password stored in it, and you must supply the
corresponding Kill Password in the kill command itself.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

112

This is a very dangerous command – use with caution, as it will affect all tags in the vicinity!

AcqG2Ops = <opsNum> G2Kill <4:killPwd>

AcqG2Ops = <opsNum> 03 <4:killPwd>

// Kill a Tag

AcqG2Ops = 1 G2Kill DE AD DE AD

The result of a G2Kill operation is just the success/error code.

// Successful G2Kill result

03 00

G2LOCK (0X05) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2Lock command changes the lock status of a field/bank of tag memory. The term “field” is used
instead of “bank” because the Reserved bank, bank 0, contains a Kill Password and an Access
Password, which can be locked independently. You can Lock or Unlock a field as you wish, but can only
PermaLock or PermaUnlock a field once.

A locked field can only be rewritten if you supply the correct AcqG2AccessPwd for the tag. A locked
Access Password of Kill Password cannot be read either. The TID bank is always PermaLocked.

You pass as an argument the <field> to be locked, as well as the desired <lockType>.

AcqG2Ops = <opsNum> G2Lock <field> <lockType>

AcqG2Ops = <opsNum> 05 <field> <lockType>

// Lock the User Bank

AcqG2Ops = 1 G2Lock 3 Lock

// PermaLock the Kill Password

AcqG2Ops = 1 G2Lock 0 PermaLock

The <field> is one of the following integers:

 0 = Kill password

10 = Access password

 1 = EPC bank

 2 = TID bank

 3 = USER bank

The <lockType> is one of the following strings, or their shortcuts:

 L or Lock

 U or Unlock

PL or PermaLock

PU or PermaUnlock

The result of a G2Lock operation is just the success/error code.

// Successful G2Lock result

05 00

G2BLOCKERASE (0X06) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2BlockErase operation erases (sets to 00) the specified range of tag memory. You specify the
bank, starting word to be erased, and how many words to erase. This command is marginally faster than
a similar G2Write, because there is no need to transmit all of those bytes filled with zeros.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

113

AcqG2Ops = <opsNum> G2BlockErase <bank> <wordPtr> <wordCount>

AcqG2Ops = <opsNum> 06 <bank> <wordPtr> <wordCount>

// Erase the first four words of USER memory

AcqG2Ops = 1 G2BlockErase 3 0 4

The result of a G2BlockErase operation is just the success/failure code.

// Successful G2BlockErase result

06 00

G2BLOCKPERMALOCK (0X08) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2BlockPermalock operation permanently write-locks specific blocks of user memory. Different tags
and different tag manufacturers define just how big a “block” of User memory is. You specify the starting
block number, and one or more 16-bit masks indicating the desired PermaLock state of each
corresponding block of memory. Most current tags have 16 User blocks or fewer, so typically the

<blockPtr> is 0, and there is only one <2:blockMask>.

AcqG2Ops = <opsNum> G2BlockPermalock <blockPtr> <2:blockMask1>…

AcqG2Ops = <opsNum> 08 <blockPtr> <2:blockMask1>…

// Permanently lock the first two User blocks

// “C0 00” = 11000000 00000000 first two blocks locked

AcqG2Ops = 1 G2BlockPermalock 0 C0 00

The result of a G2BlockPermalock operation is just the success/failure code.

// Successful G2BlockPermalock result

08 00

G2GETPERMALOCK (0X09) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The G2GetPermalock operation returns the current BlockPermalock status of blocks of User memory.
You specify the number of the starting block (in increments of 16), and will get back the 2-byte status of
the following 16 blocks.

AcqG2Ops = <opsNum> G2GetPermalock <blockPtr>

AcqG2Ops = <opsNum> 09 <blockPtr>

// Fetch the Permalock status of the first blocks of USER memory

AcqG2Ops = 1 G2GetPermalock 0

The result of a G2GetPermalock operation is the success/failure code, followed by the <2:blockMask>
data containing the status of each block (corresponding to the bits in the word, from most-significant
(leftmost) bit, to least-significant (right-most) bit.

// Successful G2GetPermalock result

// “C0 00” = 11000000 00000000 first two blocks locked

09 00 C0 00

ALIENG2USERREADLOCK (0X0A) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2UserReadLock operation utilizes a feature of Alien Higgs-based tags that allows you to hide
individual blocks of User memory, by applying a “read-lock” on those blocks. Blocks that are read-locked
will return zeros or an error if you attempt to read them without supplying the correct AcqG2AccessPwd.
Individual blocks of user memory are addressed similarly to the G2BlockPermalock command, with a

<1:blockMask> argument, except this mask is a single byte, rather than a 16-bit word used for

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

114

G2BlockPermalock. Bits in <1:blockMask> correspond to blocks in User memory, from most-significant

bit to least-significant bit.

AcqG2Ops = <opsNum> AlienG2UserReadLock <1:blockMask>

AcqG2Ops = <opsNum> 0A <1:blockMask>

// Hide the first 3
rd
 and 4

th
 blocks of USER memory

// “30” = 00110000 3
rd
 and 4

th
 blocks

AcqG2Ops = 1 AlienG2UserReadLock 30

The result of an AlienG2UserReadLock operation is just the success/failure code.

// Successful AlienG2UserReadLock result

0A 00

ALIENG2TAGSTATUS (0X8C) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2TagStatus operation can return to you the status of all of the write-locks of each of the tag’s
fields/banks, and the status of the AlienG2UserReadLocks (i.e. “hidden” blocks) in the User bank. The

argument to the command is a single hex bitmask, <1:statusMask>, whose value indicates which

status elements you would like returned. The AlienG2TagStatus is currently supported only by Alien
Higgs4-based tags.

AcqG2Ops = <opsNum> AlienG2TagStatus <1:statusMask>

AcqG2Ops = <opsNum> 8C <1:statusMask>

<1:statusMask>: 1 = bank/field write-locks (bit 1)

 2 = User read-locks (bit 2)

 3 = both write-locks and read-locks (bits 1 & 2)

// Ask for both the bank write-locks and the user read-locks

AcqG2Ops = 1 AlienG2TagStatus 03

The result of an AlienG2TagStatus operation is the success/failure code, followed by a header word
containing the number of status operations being reported and the associated statusMask, followed by a
16-bit word for each status operation, which is a bitmask of field/bank or User block lock states,
depending on which was requested.

<1:numStatusBits><1:statusMask> [<2:writeLockMask>] [<2:readLockMask>]

Where,

 <writeLockMask> : Lock/Unlock and Permalock bits are given for each tag field,

 spanning the two bytes:

Byte 1: KPW_l KPW_p APW_l APW_p EPC_l EPC_p TID_l TID_p

Byte 2: USR_l USR_p RFU RFU RFU RFU RFU RFU

 _l: 1=Locked, 0=Unlocked

 _p: 1=permanent lock, 0=regular lock

Note: An unlocked tag will report 0300, since the TID bank is PermaLocked at the

factory.

 <readLockMask> : Each bit, starting with the most-significant bit, corresponding

 to each User block’s read-lock status:

Byte 1: block1 block2 block3 block4 block5 block6 block7 block8

Byte 2: RFU RFU RFU RFU RFU RFU RFU RFU

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

115

Here are some examples of result data from the AlienG2TagStatus operation:
// AlienG2TagStatus result – just the write-locks

// “A340” = 10100011 01000000

// KillPwd and AccessPwd are locked, EPC unlocked, TID PermaLocked

// User PermaUnlocked

8C 00 0101 A340

// AlienG2TagStatus result – write- and read-locks

// write-locks = “A340” (same as above)

// read-locks = “3000” = 00110000 00000000 3
rd
 and 4

th
 blocks read-locked

8C 00 0203 A340 3000

Alien BlastWrite™ – Special Higgs4 Tag Capability
F800 | 9900 | 9680 | 9650

All of the remaining AcqG2Ops actions involve Alien’s new BlastWrite™ capability, introduced in Higgs4-
based tags. BlastWrite allows the reader to perform the same operation simultaneously, on tags that have
been inventoried. Since the reader addresses multiple tags simultaneously, the operations can be applied
to the tags very quickly. You can provision entire collections of tags - writing common portions of EPC
and USER memory, writing Access and Kill passwords, and locking various fields - all with a single, very
fast reader operation.

BlastWrite is done in conjunction with a tag inventory, except instead of performing the operation one tag
at a time as they are inventoried, the reader collects the list of tags seen during the inventory and then
performs the Blast operation on that entire group of tags at the end. Because of this, when you are
configuring your AcqG2Ops operations, you should put the blast-related operations at the end of the
sequence of operations.

None of the blast operations may require the tag to be in the secure state (i.e. the tag must not have a
non-zero access password). This is because when tags are placed into the special “pingable” state to
prepare them for blasting, they drop back to the “arbitrate” state, even if they were previously in the
“secure” state (you supplied the correct, non-zero AcqG2AccessPwd). Because of this, writing an access
password (which enables the tag security) should be one of the last things you do.

Because of the “bulk nature” of the operation, none of the BlastWrite operations can return data from the
tag.

ALIENG2BLASTLOCK (0X85) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2BlastLock command changes the lock status of a field/bank of memory for all tags in the field
at once. The term “field” is used instead of “bank” because the Reserved bank, bank 0, contains a Kill
Password and an Access Password, which can be locked independently. You can Lock or Unlock a field
as you wish, but can only PermaLock or PermaUnlock a field once.

You pass as an argument the <field> to be locked, as well as the desired <lockType>.

AcqG2Ops = <opsNum> AlienG2BlastLock <field> <lockType>

AcqG2Ops = <opsNum> 85 <field> <lockType>

// Lock the User Banks of all tags

AcqG2Ops = 1 AlienG2BlastLock 3 Lock

// PermaLock the Kill Passwords of all tags

AcqG2Ops = 1 AlienG2BlastLock 0 PermaLock

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

116

The <field> is one of the following integers:
 0 = Kill password

10 = Access password

 1 = EPC bank

 2 = TID bank

 3 = USER bank

The <lockType> is one of the following strings, or their shortcuts:

 L or Lock

 U or Unlock

PL or PermaLock

PU or PermaUnlock

The result of a AlienG2BlastLock operation is just the success/error code.

// Successful AlienG2BlastLock result

85 00

ALIENG2BLASTERASE (0X86) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2BlastErase operation erases (sets to 00) the specified range of tag memory for all tags in the
field at once. You specify the bank, starting word to be erased, and how many words to erase. This
command is marginally faster than a similar G2Write, because there is no need to transmit all of those
bytes filled with zeros.

AcqG2Ops = <opsNum> AlienG2BlastErase <bank> <wordPtr> <wordCount>

AcqG2Ops = <opsNum> 86 <bank> <wordPtr> <wordCount>

// Erase the first four words of USER memory of all tags

AcqG2Ops = 1 AlienG2BlastErase 3 0 4

The result of a AlienG2BlastErase operation is just the success/failure code.

// Successful AlienG2BlastErase result

86 00

ALIENG2BLASTWRITE (0X87) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2BlastWrite operation performs a low-level write to any writeable portion of tag for all tags in
the field at once. You specify the bank, starting word pointer to write, followed by the data to be written.
There is no increment option with AlienG2BlastWrite, since the same command must be issued to all the
tags at once.

AcqG2Ops = <opsNum> AlienG2BlastWrite <bank> <wordPtr> <2n:data…>

AcqG2Ops = <opsNum> 87 <bank> <wordPtr> <2n:data…>

// Write a kill password

AcqG2Ops = 1 AlienG2BlastWrite 0 0 DE AD DE AD

The <data> in the AcqG2Ops result for an AlienG2BlastWrite is just the result code of the operation.

// Successful AlienG2BlastWrite result

87 00

ALIENG2BLASTBLOCKPERMALOCK (0X88) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2BlastBlockPermalock operation permanently write-locks specific blocks of user memory for
all tags in the field at once. Different tags and different tag manufacturers define just how big a “block” of
User memory is. You specify the starting block number, and one or more 16-bit masks indicating the
desired PermaLock state of each corresponding block of memory. Most current tags have <= 16 User

blocks, so typically the <blockPtr> is 0, and there is only one <2:blockMask>.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

117

AcqG2Ops = <opsNum> AlienG2BlastBlockPermalock <blockPtr> <2:blockMask1>…

AcqG2Ops = <opsNum> 88 <blockPtr> <2:blockMask1>…

// Permanently lock the first two User blocks of all tags

// “C0 00” = 11000000 00000000 first two blocks locked

AcqG2Ops = 1 AlienG2BlastBlockPermalock 0 C0 00

The result of an AlienG2BlastBlockPermalock operation is just the success/failure code.

// Successful AlienG2BlastBlockPermalock result

88 00

ALIENG2BLASTUSERREADLOCK (0X8A) COMMAND & RESULTS
F800 | 9900 | 9680 | 9650

The AlienG2BlastUserReadLock operation utilizes a feature of Alien Higgs-based tags that allows you to
hide individual blocks of User memory, by applying a “read-lock” on those blocks. This Blast variant of the
command operates on all tags visible in the field at once.

Blocks that are read-locked will return zeros or an error if you attempt to read them without supplying the
correct AcqG2AccessPwd. Individual blocks of user memory are addressed similarly to the

G2BlockPermalock command, with a <1:blockMask> argument, except this mask is a single byte,

rather than a 16-bit word used for G2BlockPermalock. Bits in <1:blockMask> correspond to blocks in

User memory, from most-significant bit to least-significant bit.

AcqG2Ops = <opsNum> AlienG2BlastUserReadLock <1:blockMask>

AcqG2Ops = <opsNum> 8A <1:blockMask>

// Hide the first 3
rd
 and 4

th
 blocks of USER memory of all tags

// “30” = 00110000 3
rd
 and 4

th
 blocks

AcqG2Ops = 1 AlienG2BlastUserReadLock 30

The result of an AlienG2BlastUserReadLock operation is just the success/failure code.

// Successful AlienG2UserReadLock result

8A 00

AcqG2OpsMode
F800 | 9900 | 9680 | 9650

The AcqG2OpsMode command controls whether the configured AcqG2Ops operations will be executed
with every tag inventory that the reader performs. When Off (the default value), the AcqG2Ops are only
executed when you issue the “to” command. When On, then AcqG2Ops are executed every time the
reader acquires tags, whether due to the “t” or “get taglist” commands, or because Automode is running in
the background performing inventories.

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

AcqG2OpsMode Examples

Command

Response

>AcqG2OpsMode?

AcqG2OpsMode = Off

Command

Response

>AcqG2OpsMode = On

AcqG2OpsMode = On

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

118

AcqTime
F800 | 9900 | 9680 | 9650

The AcqTime command limits the inventory duration and aborts the inventory when it exceeds the
specified time. Aborting the inventory does not discard already collected tags. Note that due to certain
timing restrictions of the reader and the RFID protocol you should not expect the inventory duration to be
exactly the value you specified in the command. The command can be used in one of the following
formats:

1. AcqTime = <time>

 AcqTime?

This version of the command limits the total inventory duration.

2. AcqTime = <ant> <time>

 AcqTime <ant>?

This version of the command limits the inventory duration on a specific antenna. The countdown
starts every time the reader switches to an antenna. The total inventory duration specified by

AcqTime=<time> setting still applies and, if set to a non-zero value, will stop the inventory before

any per-antenna AcqTime settings expire.

where <time> is the inventory duration in milliseconds (0 to 30000 msec) and <ant> is the antenna

number. AcqTime=0 clears the inventory timing restrictions.

 Allowed Values: Integer (0..30000), in milliseconds

 Default Value: 0 (no inventory timing restrictions)

AcqTime Examples

Command

Response

>AcqTime?

AcqTime = 0

Command

Response

// abort the inventory if it takes longer than 2 seconds

>AcqTime = 2000

AcqTime = 2000

Command

Response

// maximum inventory duration on antenna 0 is 500 msec

>AcqTime = 0 500

AcqTime = 0 500

SpeedFilter
F800 | 9900 | 9680 | 9650

The SpeedFilter command allows you to specify which tags are recognized and placed on the TagList,
based on their speed. Only those tag reads with computed speeds within the range(s) of the filter are
recognized by the reader. You can specify an inclusive range (e.g. between -1m/s and +1m/s), or an
exclusive range (e.g. less than -5m/s or greater than +5m/s).

A speed range is defined by two speeds, S1 and S2, and you can specify up to four separate ranges,
each separated from the next with a vertical bar (|). Each speed range can be optionally configured to
operate only on certain antennas. A tag is reported if its speed matches at least one of the ranges.
Speeds have units of meters/sec.

SpeedFilter = S1, S2 [| S3, S4]…

You don’t really need the commas,

SpeedFilter = S1 S2 [| S3 S4]…

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

119

If S1 < S2, all tags with speeds inside the range S1-S2 are reported.
If S1 > S2, all tags with speeds outside the range S2-S1 are reported.

You can have different SpeedFilter ranges on separate antennas by including an optional third parameter
in each range: an integer bitmap of antennas on which the range is active. The low-order bits of the
antenna bitmap correspond to each numbered antenna port on the reader. For instance, to have a speed
range be active only on the 1

st
 two antennas, you use an antenna bitmap of “3” (since 3 = 00000011binary):

SpeedFilter = 0 999 3 would filter out only those tags on the 1
st
 two antennas that are moving away (their

speed is between 0 and 999). When you don’t specify an antenna bitmap, the reader assumes you mean
“all antennas” and uses a value of 15 (for a 4-port reader) or 3 (for a 2-port reader).

Take note that if you use antenna bitmaps on your filter ranges, that any read coming in on an antenna
that doesn’t match any of your antenna bitmaps will be ignored. A tag read must pass at least one of the
filters in order to be reported, and if none of the antenna bitmaps match the antenna of the tag read, then
the data is thrown away.

SpeedFilter = S1 S2 [A1] [| S3 S4 [A2]]…

By default, the tags whose speeds could not be calculated accurately (due to an aborted communication
while interrogating the tag or noise) are discarded and not reported in the tag list. The "nospeed" option of
the SpeedFilter makes the reader keep those tags on the tag list, but assigns a 'non valid' speed value of
999.00. This way you get to see the tag read anyway, and it is simple to see that the speed value is not
valid. The direction for tags with invalid speeds is reported as '0'.

 Turning on SpeedFilter causes the reader to perform extra work while reading tags,
which may impact read performance.

 You can see the actual speed of each tag in the TagList be specifying a custom
TagList format which includes the %s or ${SPEED} tokens.

 To disable SpeedFilter, simply set it to 0. This is the default value.

 To include tags whose speeds could not be calculated, add the 'nospeed' option.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

120

SpeedFilter Examples

Command

Response

>SpeedFilter?

SpeedFilter = 0

Command

Response

// read only tags essentially stationary (inclusive range)

>SpeedFilter = -0.5 0.5

SpeedFilter = -0.5 0.5

Command

Response

// read only tags that are moving (exclusive range)

>SpeedFilter = 1 -1

SpeedFilter = 1 -1

Command

Response

// read only tags going between -3 and -5 m/s or 0.5 and 1 m/s

>SpeedFilter = -5 -3 | 0.5 1

SpeedFilter = -5 -3 | 0.5 1

Command

Response

// read ALL tags (do not filter based on speed values and

// also report tags for which speed could not be calculated)

>SpeedFilter = nospeed

SpeedFilter = nospeed

Command

Response

// read tags with speeds between -1 and 1 m/sec as well as

// tags for which speed could not be calculated

>SpeedFilter = -1, 1 | nospeed

SpeedFilter = -1, 1 | nospeed

Command

Response

// read only stationary tags on ant #0 and moving tags on ant #1

>SpeedFilter = -0.5 0.5 1 | 1 -1 2

SpeedFilter = -0.5 0.5 1 | 1 -1 2

RSSIFilter
F800 | 9900 | 9680 | 9650

The RSSIFilter command allows you to see only those tags that have particular received signal strengths.
You might only want to read tags that are strong (generally closer) or weak (generally farther). Unlike the
SpeedFilter, enabling the RSSIFilter does not require the reader to perform any extra work when reading
tags, so read performance should not be impacted.

An RSSI range is defined by two values, R1 and R2, and you can specify up to four separate ranges,
each separated from the next with a vertical bar (|). Each RSSI range can be optionally configured to
operate only on certain antennas.

A tag is reported if its RSSI matches at least one of the ranges. The values for RSSI reported by the
reader are unit-less quantities, and different reader models may report different RSSI values under the
same conditions, due to the different radio architectures. Some tuning of the RSSIFilter values may be
required on each reader to give consistent results across an enterprise deployment.

RSSIFilter = R1, R2 [| R3, R4]…

You don’t really need the commas,

RSSIFilter = R1 R2 [| R3 R4]…

If R1 < R2, all tags with RSSI inside the range R1-R2 are reported – an inclusive range.
If R1 > R2, all tags with RSSI outside the range R2-R1 are reported – an exclusive range. This is useful to
filter tags with a large RSSI, more than, say, 10,000. A range of “10000 0” filters tags with RSSI greater
than 10000 or less than 0 (which is impossible).

You can have different RSSIFilter ranges on separate antennas by including an optional third parameter
in each range: an integer bitmap of antennas on which the range is active. The low-order bits of the
antenna bitmap correspond to each of the numbered antenna ports on the reader. For instance, to have

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

121

an RSSI range be active only on the 1
st
 two antennas, you would use an antenna bitmap of “3” (since 3 =

00000011binary): RSSIFilter = 5000 0 3 would filter out only those tags on the 1
st
 two antennas that are

strong (their RSSI is larger than 5000). When you don’t specify an antenna bitmap, the reader assumes
you mean “all antennas” and uses a value of 15 (for a 4-port reader) or 3 (for a 2-port reader).

Take note that if you use antenna bitmaps on your filter ranges, that any read coming in on an antenna
that doesn’t match any of your antenna bitmaps will be ignored. A tag read must pass at least one of the
filters in order to be reported, and if none of the antenna bitmaps match the antenna of the tag read, then
the data is thrown away.

RSSIFilter = R1 R2 [A1] [| R3 R4 [A2]]…

 RSSIFilter does not require the reader to perform extra work, so it shouldn't

negatively impact read performance.

 You can see the actual RSSI value of each tag in the TagList be specifying a custom
TagList format which includes the %m or ${RSSI} tokens.

 To disable RSSIFilter, simply set it to 0. This is the default value.

RSSIFilter Examples

Command

Response

>RSSIFilter?

RSSIFilter = 0

Command

Response

// Show only tags with RSSI between 0 and 35000

> RSSIFilter = 0 35000

RSSIFilter = 0 35000

Command

Response

// Show only tags with RSSI lower than 5000 or higher than 35000

> RSSIFilter = 35000 5000

RSSIFilter = 35000 5000

Command

Response

// Show only weak tags on ant #0,1 and string tags on ant #2,3

// antennas 0 & 1 : 00000011binary = 3 for antenna bitmap

// antennas 2 & 3 : 00001100binary = 12 for antenna bitmap

> RSSIFilter = 0 1000 3 | 1000 0 12

RSSIFilter = 0 1000 3 | 1000 0 12

TagStreamCountFilter
F800 | 9900 | 9680 | 9650

The TagStreamCountFilter allows you to tell the reader to only stream tag data once a given tag has been
read a minimum number of times and/or until it reaches a maximum count.

 TagStreamCountFilter = min [max]

If just the min is specified, then the tag is only streamed if the current count for that tag in the reader's

taglist is greater than or equal to min. If the optional max value is specified, then the tag will not be

streamed once the count exceeds the max. Allowed ranges for both min and max are 0...65535, and the

max (if specified) must be greater than the min.

The default value is "0", which effectively turns off the TagStreamCountFilter and causes the reader to

stream all tags. This also happens to have the same effect as "TagStreamCountFilter = 1".

To stream tags only once, use TagStreamCountFilter = 0 1.

Note that the current tag count that is used to determine if a tag should be streamed or not is dependent
on the concept of PersistTime for the taglist. Also, when using TagStreamMode exclusively to get your

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

122

tag data, you should set a PersistTime other than -1, otherwise the reader's internal taglist will never be
purged of data.

TagStreamCountFilter Examples

Command

Response

>TagStreamCountFilter?

TagStreamCountFilter = 0

Command

Response

// stream tags only once

>TagStreamCountFilter = 0 1

TagStreamCountFilter = 0 1

TagAuth
F800 | 9900+ | 9900 | 9680 | 9650

The TagAuth command provides support for the Alien Dynamic Tag Authentication feature available in
Alien Higgs3- and Higgs4-based tags. When TagAuth is enabled the reader performs additional
verification procedures while reading tags in order to validate that these are authentic Alien tags.

Enabling TagAuth causes the reader to perform extra work while reading tags and may impact read
performance. The format of the command is as follows:

 TagAuth = off | on | h3 | -h3 | h4 | -h4 | * | not

Different options can be combined using the '|' separator. The options are as follows:

Option Reader Authenticates Reader Reports

off do not authenticate all tags

 on all authenticable tag types
(Alien Higgs3 & Higgs4)

all tags (including not authenticated and tags not supporting
authentication protocol)

 h3 Alien Higgs3 tags authenticated Higgs3 tags only

-h3 Alien Higgs3 tags tags that failed authentication, i.e. tags that have the
manufacturer's ID set to Higgs3 but fail verification test

 h4 Alien Higgs4 tags authenticated Higgs4 tags only

-h4 Alien Higgs4 tags tags that failed authentication, i.e. tags that have the
manufacturer's ID set to Higgs4 but fail verification test

 * Used in conjunction with the h3/-h3/h4/-h4 options to make the reader report all found tags including

not-authenticated tags and tags not supporting authentication protocol. This option is useful when
TaglistFormat is set to Custom and includes the Tag Authentication token ${AUTH} (see example

below).

not Used in conjunction with the h3/-h3/h4/-h4 options to invert the meaning of the options. If more

than one option is specified using the '|' separator, then the 'not' applies to the entire group of

options. The 'not' option cannot be used with 'on' or 'off'.

The ${AUTH} custom tag list format token is used to report information about tag authentication. The

reported value includes tag manufacturer's id code as well as a symbol showing the result of the Alien
dynamic tag authentication as follows:

+ authentication succeeded

- authentication failed

No symbol after the manufacturer's id indicates that either the tag does not support Alien dynamic
authentication or the authentication process failed to complete.

If the reader was unable to retrieve manufacturer's id code from the tag (for example, due to noise or an

aborted transaction) then the ${AUTH} field is displayed as the '?' symbol.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

123

TagAuth Examples

Command

Response

>TagAuth?

TagAuth = OFF

Command

Response

// Dynamically Authenticate Alien Higgs-3 tags and only report Higgs-3 tags

>TagAuth = h3

TagAuth = h3

Command

Response

>TagAuth = h3 | *

TagAuth = h3 | *

// Dynamically authenticate Higgs-3 tags but also report ALL other tags

// found no matter if they passed or failed authentication or whether

// they support authentication protocol or not.

// This setting is useful when tag list format is set to 'custom' and

// includes the Tag Authentication token ${AUTH} as it allows one to see

// authentication properties as well as tag's manufacturer's codes for

// all tags in the field.

// Currently there is only one type of authentication (Higgs-3) supported,

// so the 'h3 | *' setting happens to have the same effect as the

// option 'on' (authenticate all known tag types and report all tags)

Command

Response

>TagAuth = -h3

TagAuth = -h3

// Authenticate Higgs-3 tags and only report tags that failed dynamic

// authentication. This could be an indication that this is a fake Higgs-3 tag.

// Note that the reader will not report tags not supporting Alien Dynamic

// Authentication, for example Alien Higgs-2 tags.

Command

Response

>TagAuth = h3 | -h3

TagAuth = h3 | -h3

// Authenticate Higgs-3 tags and only report Alien Higgs-3 tags

// that passed verification and/or tags that have Alien Higgs-3

// signature (manufacturer's Id) but failed the verification procedure.

// Other types of tags (for example, Higgs-2) will not be reported.

Command

Response

>TagAuth = not h3

TagAuth = not h3

// Authenticate Higgs-3 tags and exclude tags that pass verification

// process, i.e. the reader will not report tags that are true Alien

// Higgs-3 tags but other tags like Alien Higgs-2 or Higgs-3 tags that

// failed authentication, or tags from other manufacturers will be reported.

Command

Response

// authenticate Alien Higgs-3 or Higgs-4 tags, also report all other tags

Alien>TagAuth = h3|h4|*

TagAuth = h3|h4|*

Alien>TagListCustomFormat = %k auth:${AUTH}

TagListCustomFormat = %k auth:${AUTH}

Alien>TagListFormat = custom

TagListFormat = Custom

Alien>t

A5A5A5A5A5A5A5A5A5A5000A auth:E200 3411 // Higgs-2

A5A4A5A5A5ABA5A5A5A50019 auth:E200 3412+ // Higgs-3 authenticated

5068696C69707300AAAAAAAA auth:E200 4001 // not Alien tag

A5A4A5A5A5ABA5A5A5A5001E auth:? // unable to retrieve tag information

A5A4A5A5A5ABA5A5A5A5002C auth:E200 3414+ // Higgs-4 authenticated

A5A4A5A5A5ABA5A5A5A5000C auth:E200 3412- // Higgs-3 authentication FAILED

535410012002300340045005 auth:E200 7240 // not Alien tag

4E585000AC1F3681EC880468 auth:E200 6003 // not Alien tag

E2003412DC03011706095651 auth:E200 3412+ // Higgs-3 authenticated

4D32494D3333777755556666 auth:E200 1071 // not Alien tag

48322D3015081509150A150B auth:E200 3411 // Higgs-2

A5A4A5A5A5ABA5A5A5A5002F auth:E200 3412+ // Higgs-3 authenticated

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

124

AutoMode Commands

AutoMode is an operation mode that enables hands-free monitoring of tags. Setup requires that you issue
a series of configuration commands to the reader. These commands detail how and when to read tags,
and then when tags are found, whom to tell. Once configured, the reader can be left to operate on its
own.

For a detailed description of the AutoMode system please refer to Chapter 2 of this guide.

AutoMode
F800 | 9900 | 9680 | 9650

The AutoMode command turns on or off the auto mode.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

 When AutoMode is turned on, the reader records the state of the external outputs.
When AutoMode is then turned off, the reader reapplies the saved external output
state, unless AutoWaitOutput = -1.

AutoMode Examples

Command

Response

>AutoMode?

AutoMode = ON

Command

Response

>AutoMode=on

AutoMode = ON

AutoWaitOutput
F800 | 9900 | 9680 | 9650

The AutoWaitOutput specifies the external output settings to apply while in the wait state of AutoMode.
The parameter is a bitmap for the four external outputs, where a "1" sets an output to high, and a "0" sets
an output to low. Output #1 is specified by bit 0 in the mask, output #2 is specified by bit 1 in the mask,
etc.

This is the initial AutoMode state, so setting AutoWaitOutput=0 clears all the outputs each time an
AutoMode cycle starts.

 Allowed Values: Integer(-1..255) (max depends on reader model)

 Default Value: 0

 Setting AutoWaitOutput = -1 instructs the reader to not change the external output
setting when entering the wait state. Normally, when AutoMode is turned off, it resets
the external outputs to the state they were in when AutoMode was turned on. This
does not happen if AutoWaitOutput = -1.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

125

AutoWaitOutput Examples

Command

Response

>AutoWaitOutput?

AutoWaitOutput = 0

Command

Response

>AutoWaitOutput = 3 (sets outputs #1 and #2 high)

AutoWaitOutput = 3

AutoStartTrigger
F800 | 9900 | 9680 | 9650

The AutoStartTrigger specifies the external inputs to monitor to cause the auto mode to jump from wait
state to work state. Triggers can either be an input going from low to high (rising edge) or high to low
(falling edge). For each type of change, an integer bitmap must be provided to specify the inputs to listen
for changes on.

The command takes two space-separated parameters, a rising edge bitmap and a falling edge bitmap.
The bitmaps are “OR” bitmaps - if a changing input corresponds to any of the set bits in the bitmap, then
AutoMode is triggered. The reader can only listen for rising edges or falling edges at one time, but not
both.

You can set the AutoStartTrigger to "-1 -1". This causes the reader to remain in the wait state, regardless
of the external inputs. You can then initiate one AutoMode cycle with the AutoModeTriggerNow
command. This gives you some manual control (via software) over the Automode state machine.

AutoStartTrigger Examples

Command

Response

>AutoStartTrigger?

AutoStartTrigger = 0 0 (rising, falling)

Command

Response

>AutoStartTrigger =3 0

AutoStartTrigger = 3 0 (rising, falling)

AutoStartPause
F800 | 9900 | 9680 | 9650

The AutoStartPause feature allows you to tell the reader to wait a specified number of milliseconds after
receiving a start trigger before actually starting.

This allows you to compensate for situations such as a conveyor, where you wish to trigger the reader
with a photo-eye, but the photo-eye must be placed some distance from the reader. By setting the
AutoStartPause to a value close to the time between when a package crosses the photo-eye's beam and
when it reaches the read zone, you eliminate unnecessary RF activity and potential mis-reads from other
tags that may happen to still be in the field.

 Allowed Values: Integer(0..86400000)

 Default Value: 0 msec

AutoStartTrigger Examples

Command

Response

>AutoStartPause?

AutoStartPause = 0

Command

Response

>AutoStartPause = 150

AutoStartPause = 150

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

126

AutoWorkOutput
F800 | 9900 | 9680 | 9650

The AutoWorkOutput specifies the output settings to effect while in the work state of AutoMode. The
parameter is a bitmap for the four external outputs, where a "1" sets an output to high, and a "0" sets an
output to low. Output #1 is specified by bit 0 in the mask, output #2 is specified by bit 1 in the mask, etc.

 Allowed Values: Integer(-1..255) (max depends on reader model)

 Default Value: 0

 Setting AutoWorkOutput = -1 instructs the reader to not change the external output
setting when entering the work state.

AutoWorkOutput Examples

Command

Response

>AutoWorkOutput?

AutoWorkOutput =0

Command

Response

>AutoWorkOutput =3 (sets outputs #1 and #2 high)

AutoWorkOutput =3

AutoAction
F800 | 9900 | 9680 | 9650

The AutoAction command specifies the action to perform when running in the work state of AutoMode.
The reader continues to perform the AutoAction for the duration of the work state. If the AutoAction is a
programming command, the reader attempts the operation until it succeeds, or the work state is finished
(because of a timer or external trigger).

AutoAction Description

None Perform no action

Acquire

Perform tag inventories.

This is the default value.

ProgramEPC

("Program")

Programs a tag's EPC.

See the Tag Programming chapter for more information.

Erase Erases a tag's EPC.

See the Tag Programming chapter for more information.

ProgramAndLockEPC

("Program and Lock")

Programs and locks a tag's EPC.

See the Tag Programming chapter for more information.

ProgramUser Program' a tag's User memory.

See the Tag Programming chapter for more information.

ProgramAndLockUser Programs and locks a tag's User memory.

See the Tag Programming chapter for more information.

ProgramAlienImage Writes an entire tag image to an Alien Higgs2 or Higgs3 tag.

Macro <macroname> Run the named reader macro.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

127

AutoAction Examples

Command

Response

>AutoAction?

AutoAction = Acquire

Command

Response

>AutoAction = Acquire

AutoAction = Acquire

AutoStopTrigger
F800 | 9900 | 9680 | 9650

The AutoStopTrigger specifies the external inputs to monitor to cause the auto mode to jump from work
state to evaluate state. Triggers can either be an input going from low to high (rising edge) to high to low
(falling edge). For each type of change, an integer bitmap must be provided to specify the inputs to listen
for changes on.

The command takes two space-separated parameters, a rising edge bitmap and a falling edge bitmap.
The bitmaps are “OR” bitmaps - if a changing input corresponds to any of the set bits in the bitmap, then
AutoMode is stopped. The reader can only listen for rising edges or falling edges at one time, but not
both.

AutoStopTrigger Examples

Command

Response

>AutoStopTrigger?

AutoStopTrigger = 0 0 (rising, falling)

Command

Response

>AutoStopTrigger = 3 0

AutoStopTrigger = 3 0 (rising, falling)

AutoStopTimer
F800 | 9900 | 9680 | 9650

The AutoStopTimer offers an alternative way to jump from work state to evaluate state. This is a time-
based stop trigger, which puts an upper-limit on how long the AutoAction runs for in each cycle. The
parameter is a single time period, specified in milliseconds.

 Allowed Values: Integer(-1..86400000)

 Default Value: 1000 msec

 AutoStopTimer = -1 indicates the reader should remain in the work state indefinitely,
or until a configured AutoStopTrigger is received. If there is no AutoStopTimer or
AutoStopTrigger, the reader will never transition into the evaluate/notify state, so the
outputs will never change and no notification messages will be sent.

 AutoStopTimer = 0 indicates the reader should perform exactly one operation (read,
program, etc.) in its work state, then proceed to the evaluate state.

 An AutoStopTimer of 86,400,000 msec corresponds to 24 hours.

If the reader is in the middle of an inventory when the AutoStopTimer expires, the inventory completes
before moving on to the evaluate state.

AutoStopTimer Examples

Command

Response

>AutoStopTimer?

AutoStopTimer = 1000

Command

Response

>AutoStopTimer = 5000

AutoStopTimer = 5000

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

128

AutoStopPause
F800 | 9900 | 9680 | 9650

The AutoStopPause is a feature which allows you to tell the reader to wait a specified number of
milliseconds after receiving a stop trigger before actually stopping. This delay only applies when the
AutoAction is stopped because of an external I/O trigger, not because of the AutoStopTimer expiring.

AutoStopPause allows you to compensate for situations such as a conveyor, where you wish to trigger
the reader to start and stop with photo-eyes, but the "stop" photo-eye must be placed at a position too
close to the reader. By setting the AutoStopPause to a value close to the time between when a package
crosses the "stop" photo-eye's beam and when it actually leaves the effective read zone, you allow the
reader to continue to do useful work even after the stop trigger has fired.

 Allowed Values: Integer(0..86400000)

 Default Value: 0 msec

AutoStopPause Examples

Command

Response

>AutoStopPause?

AutoStartPause = 0

Command

Response

>AutoStartPause = 150

AutoStartPause = 150

AutoTrueOutput
F800 | 9900 | 9680 | 9650

The AutoTrueOutput specifies the output settings to effect if the evaluate mode of AutoMode evaluates to
true. The parameter is a bitmap for the four external outputs, where a "1" sets an output to high, and a "0"
sets an output to low. Output #1 is specified by bit 0 in the mask, output #2 is specified by bit 1 in the
mask, etc.

 Allowed Values: Integer(-1..255) (max depends on reader model)

 Default Value: 0

 Setting AutoTrueOutput = -1 instructs the reader to not change the external output
setting when entering the evaluate true state.

AutoTrueOutput Examples

Command

Response

>AutoTrueOutput?

AutoTrueOutput = 0

Command

Response

>AutoTrueOutput = 3 (sets outputs #1 and #2 high)

AutoTrueOutput = 3

AutoTruePause
F800 | 9900 | 9680 | 9650

The AutoTruePause specifies a millisecond pause to effect if the autonomous evaluation mode evaluates
to true. This pause occurs after the AutoTrueOutput command has been processed. Note that while the
reader is pausing, it is not reading tags, which can affect performance.

 Allowed Values: Integer(0..86400000)

 Default Value: 0 msec

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

129

AutoTruePause Examples

Command

Response

>AutoTruePause?

AutoTruePause(ms) = 0

Command

Response

>AutoTruePause = 500

AutoTruePause = 500

AutoFalseOutput
F800 | 9900 | 9680 | 9650

The AutoFalseOutput specifies the output settings to effect if the evaluate mode of AutoMode evaluates
to false. The parameter is a bitmap for the four external outputs, where a "1" sets an output to high, and a
"0" sets an output to low. Output#1 is specified by bit 0 in the mask, output #2 is bit 1 in the mask, etc.

 Allowed Values: Integer(-1..255) (max depends on reader model)

 Default Value: 0

 Setting AutoFalseOutput = -1 instructs the reader to not change the external output
setting when entering the evaluate false state.

AutoFalseOutput Examples

Command

Response

>AutoFalseOutput?

AutoFalseOutput = 0

Command

Response

>AutoFalseOutput = 3

AutoFalseOutput = 3

AutoFalsePause
F800 | 9900 | 9680 | 9650

The AutoFalsePause specifies a millisecond pause to effect if the autonomous evaluation mode
evaluates to false. This pause occurs after the AutoFalseOutput command has been processed. Note that
while the reader is pausing, it is not reading tags, which can affect performance.

 Allowed Values: Integer(0..86400000)

 Default Value: 0 msec

AutoFalsePause Examples

Command

Response

>AutoFalsePause?

AutoFalsePause (ms) = 0

Command

Response

>AutoFalsePause = 500

AutoFalsePause = 500

AutoErrorOutput
F800 | 9900 | 9680 | 9650

The AutoErrorOutput specifies the output settings to apply if the AutoMode action evaluates to false with
one of the listed errors. If there is no match then the output is set to the AutoFalseOutput value. The first
parameter is a bitmap of external outputs to energize, followed by an optional list of error codes. A bit
value of "1" sets an output to high, and a "0" sets an output to low. Output #1 is specified by first (low
order) bit of the bitmap, output #2 is specified by the second bit, etc.

 AutoErrorOutput = <output>[,err1 [,err2]...]

If only a single <output> parameter is specified, it must be '-1' (disabled). This is the default value.

 Allowed Values:

 <output bitmap>: Integer (-1..255) (maximum depends on reader type)

 <err>: Integer (1..255)

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

130

 Default Value: -1 (disabled)

 Setting AutoFalseOutput = -1 instructs the reader to not change the external output
setting when entering the evaluate false state.

AutoErrorOutput Examples

Command

Response

>AutoErrorOutput?

AutoErrorOutput = -1

Command

Response

// set output pin 2 if AutoMode action results in errors 134 or 149

>AutoErrorOutput = 4 134 149

AutoErrorOutput = 4 134 149

AutoProgError
F800 | 9900 | 9680 | 9650

When an AutoMode programming action fails, a new tag is added to the tag list with the antenna value
set to 255. The AutoProgError command allows you to choose a custom error value or report the actual
error code. Setting AutoProgError to '-1' results in reporting the actual error code.

 AutoProgError = <error>

 Allowed Values: Integer(-1..255)

 Default Value: 255

 Setting AutoProgError = -1 results in reporting the actual error code.

AutoProgError Examples

Command

Response

>AutoProgError?

AutoProgError = 255

Command

Response

>AutoProgError = -1 // set to -1 to report actual error code

AutoProgError = -1

AutoModeReset
F800 | 9900 | 9680 | 9650

The AutoModeReset command resets all auto mode parameters to their default values, including setting
the auto mode to off.

AutoModeReset Examples

Command

Response

>AutoModeReset

All AutoMode settings have been reset!

AutoModeTriggerNow
F800 | 9900 | 9680 | 9650

The AutoModeTriggerNow command emulates an external IO trigger event to trigger AutoMode to start.
This command only works if the RFID Reader is already in AutoMode and is waiting for a start trigger
condition. At this point, issuing the AutoModeTriggerNow command is identical to a real external trigger
event, forcing AutoMode into its action cycle.

AutoModeTriggerNow Examples

Command

Response

>AutoModeTriggerNow

Auto Mode Triggering Now

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

131

Notify Mode Commands

The Notify Mode commands are used to set up automated event notification either upon the expiration of
a timer, or triggered off of events that occur while the reader is running in AutoMode.

NotifyMode
F800 | 9900 | 9680 | 9650

The NotifyMode command turns on or off the notify mode.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

NotifyMode Examples

Command

Response

>NotifyMode?

NotifyMode = ON

Command

Response

>NotifyMode = on

NotifyMode = ON

NotifyAddress
F800 | 9900 | 9680 | 9650

The NotifyAddress command specifies where notification messages should be sent when they are
triggered. The form of the address determines the method of delivery.

There are four delivery methods supported as shown in the table below:

NotifyAddress Description

hostname:port Send a message to a specified port on a networked machine. The
address takes the form “hostname:port.” For example,
“123.01.02.98:3450” or “listener.alientechnology.com:10002”

user@domain.com

Send a message via e-mail to the address specified. The address is
specified in standard email form, i.e., user@domain.com

NOTE: the MailServer parameter must be configured for this to work.
Optionally the MailFrom parameter can be used. No email
authentication protocols are supported at this time.

http://domain:port/path Send a message as a POST request to a web service. The address
must start with “http://”, and may optionally include the port number
(default is 80) and path to a specific web service. The notification
message fills the body of the content part of the POSTed message,
with no key=value form-style formatting – you just read the input
stream directly.

SERIAL Send a message to the serial connection. The word “SERIAL” is
used as the address. The word is not case sensitive.

ALR-F800: this sends the message to both SERIAL0 (RS-232) and
SERIAL1 (USB) ports.

(ALR-F800 only)

SERIAL0

SERIAL1

Send a message to one of the ALR-F800’s serial ports:

SERIAL0 delivers the message to the RS-232 port.

SERIAL1 delivers it to the USB port.

You can also specify a fail-over NotifyAddress, to be used when a notification attempt to the primary
NotifyAddress fails. The reader always tries the primary address first before failing over to the second

mailto:user@domain.com

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

132

address. The two addresses may indicate different delivery protocols – the primary might be a TCP
socket address, and the fail-over might be an e-mail address, for instance.

You specify the fail-over address after the primary address, separating them with a vertical bar (|):

NotifyAddress = <address1> | <address2>

NotifyAddress Examples

Command

Response

>NotifyAddress?

NotifyAddress = 10.1.0.12:4000

Command

Response

>NotifyAddress = user@msn.com

NotifyAddress = user@msn.com

Command

Response

// Specify a fail-over address

>NotifyAddress = 10.1.0.12:4000 | user@msn.com

NotifyAddress = 10.1.0.12:4000|user@msn.com

NotifyTime
F800 | 9900 | 9680 | 9650

The NotifyTime command assigns and retrieves the time interval for automatic TagList pushing to a
listening machine.

 Allowed Values: Integer(0..65535)

 Default Value: 0 sec

 The time is specified in seconds.

 If set to zero, the time-based automatic notification is disabled.

 When set to a positive number of seconds, a standard notification message is sent
out each period.

NotifyTime Examples

Command

Response

>NotifyTime?

NotifyTime = 30

Command

Response

>NotifyTime = 30

NotifyTime = 30

NotifyTrigger
F800 | 9900 | 9680 | 9650

The NotifyTrigger command specifies and retrieves the event conditions (other than time-based) upon
which a notification message is sent out. Notify messages can be triggered under any of the following
conditions:

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

133

Trigger Meaning

Add Send message when new tag is read and added to the TagList.

Sends only the added tags.

Remove Send message when a tag is removed from the TagList.

Sends only the removed tags.

AddRemove Send message when a tag is either added to or removed from the TagList.

Sends the list of added tags and the list of removed tags.

Change Send message when a tag is either added to or removed from the TagList.

Sends the current TagList

True Send message when the evaluation task of the autonomous state loop evaluates
to true, typically when tags are added to the TagList.

Sends the current TagList

False Send message when the evaluation task of the autonomous state loop evaluates
to false, typically when tags are not added to the TagList.

Sends the current TagList

TrueFalse Send message when the evaluation task of the autonomous state loop evaluates
to true or false (i.e. every time).

Sends the current TagList

NotifyTrigger Examples

Command

Response

>NotifyTrigger?

NotifyTrigger = Remove

Command

Response

>NotifyTrigger = add

NotifyTrigger = Add

NotifyFormat
F800 | 9900 | 9680 | 9650

The NotifyFormat parameter specifies the format of any notification message. The format may be one of
the following:

Format Description

Text TagLists are sent out as plain text messages, one tag ID per line.

Terse Similar to the Text format, except TagList data is formatted in the terse format.

XML TagLists are sent out in XML text format.

Custom Similar to the Text format, except TagList data is formatted as defined by the
TagListCustomFormat command.

 Text-formatted TagLists take the form:

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

134

#Alien RFID Reader Auto Notification Message

#ReaderName: Spinner Reader

#ReaderType: Alien RFID Tag Reader (Class 1 / 915MHz)

#IPAddress: 10.1.70.13

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2003/01/21 12:48:59

#Reason: TEST MESSAGE

Tag:8000 8004 0000 003B, Disc:2003/12/04 15:08:59, Last:2003/12/04 15:08:59, Count:4,

Ant:0

Tag:8000 8004 9999 0004, Disc:2003/12/04 15:08:59, Last:2003/12/04 15:08:59, Count:3,

Ant:0

#End of Notification Message

 Terse-formatted TagLists take the form:

#Alien RFID Reader Auto Notification Message

#ReaderName: Spinner Reader

#ReaderType: Alien RFID Tag Reader (Class 1 / 915MHz)

#IPAddress: 10.1.70.13

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2003/01/21 12:48:59

#Reason: TEST MESSAGE

8000 8004 0000 003B,0,4

8000 8004 9999 0004,0,3

#End of Notification Message

 XML-formatted TagLists take the form:

<Alien-RFID-Reader-Auto-Notification>

 <ReaderName>Spinner Reader</ReaderName>

 <ReaderType><Alien RFID Tag Reader (Class 1 / 915MHz)</ReaderType>

 <IPAddress>10.1.70.13</IPAddress>

 <CommandPort>23</CommandPort>

 <MACAddress>00:80:66:10:11:6A</MACAddress>

 <Time>2003/01/21 12:49:22</Time>

 <Reason>TEST MESSAGE</Reason>

 <Alien-RFID-Tag-List>

 <Alien-RFID-Tag>

 <TagID>8000 8004 0000 003B </TagID>

 <DiscoveryTime>2003/12/04 15:08:59</DiscoveryTime>

 <LastSeenTime>2003/12/04 15:08:59</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>4</ReadCount>

 <Protocol>1</Protocol>

 </Alien-RFID-Tag>

 <Alien-RFID-Tag>

 <TagID>8000 8004 9999 0004</TagID>

 <DiscoveryTime>2003/12/04 15:08:59</DiscoveryTime>

 <LastSeenTime>2003/12/04 15:08:59</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>3</ReadCount>

 <Protocol>1</Protocol>

 </Alien-RFID-Tag>

 </Alien-RFID-Tag-List>

</Alien-RFID-Reader-Auto-Notification>

NotifyHeader
F800 | 9900 | 9680 | 9650

The NotifyHeader command turns on or off the header portion of each notification message. When the
NotifyHeader is turned off, notification messages contain only the TagList portion of the message.

 Allowed Values: "ON" | "OFF"

 Default Value: "ON"

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

135

NotifyMode Examples

Command

Response

>NotifyHeader?

NotifyHeader = On

Command

Response

>NotifyHeader = off

NotifyHeader = Off

NotifyKeepAliveTime
F800 | 9900 | 9680 | 9650

When the reader sends a notification message out over the network, it needs an open TCP socket to do
so. Opening and closing a socket entails some processor and network overhead, and if the notifications
are coming out of the reader rapidly, this overhead can become a burden that hinders reader
responsiveness.

The NotifyKeepAliveTime attribute sets the amount of time (in seconds) that the reader keeps this socket
open. For rapid notifications, it may be advantageous for the reader to hold the socket open continuously.
You do this by setting NotifyKeepAliveTime to some value greater than the expected time between
notifications.

On the other hand, holding the socket open places a burden on the network. For infrequent notifications,
it is advantageous to leave the NotifyKeepAliveTime small so that the socket is opened only long enough
for a single notification to be sent out, and is then closed automatically after message delivery.

 Allowed Values: Integer(0..65535)

 Default Value: 30

NotifyKeepAliveTime Examples

Command

Response

>NotifyKeepAliveTime?

NotifyKeepAliveTime = 30

Command

Response

>NotifyKeepAliveTime = 90

NotifyKeepAliveTime = 90

MailServer
F800 | 9900 | 9680 | 9650

The MailServer command allows you to define an SMTP (simple mail transfer protocol) mail server. The
SMTP server must support non-authenticated access. This mail server is used only when automatic
notification is configured (see Notify commands) and is set to use Mail as its delivery method.

MailServer Examples

Command

Response

>MailServer?

MailServer = 12.34.56.78

Command

Response

>MailServer = 45.224.124.34

MailServer = 45.224.124.34

MailFrom
F800 | 9900 | 9680 | 9650

The MailFrom command allows you to define the email address associated with the RFID Reader. The
emails sent out by the RFID Reader have this parameter set in the From: field of the email header.

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

136

MailFrom Examples

Command

Response

>MailFrom?

MailFrom = AlienRFIDReader

Command

Response

>MailFrom = reader@mycompany.com

MailFrom = reader@mycompany.com

NotifyRetryCount
F800 | 9900 | 9680 | 9650

If a network notification fails to connect to a host at the specified NotifyAddress, the reader attempts to
resend the notification message. Rather than endlessly retrying a failed operation (which needlessly
consumes reader resources), the reader stops after the number of attempts reaches the
NotifyRetryCount. At this point the reader turns NotifyMode off.

Readers can queue up sequences of failed notification messages (up to 1000 messages), and they are
all delivered once connectivity is reestablished, either after you resolve the underlying network problem,
or by configuring a different NotifyAddress. This feature obviates the need for a NotifyMode "kill switch",
so the NotifyRetryCount default value is –1 (never stop retrying) in these readers.

 Allowed Values: Integer(-1..32767)

 Default Value: -1 (never give up retrying)

 The period between retries is given by the NotifyRetryPause (below).

 NotifyRetryCount Examples

Command

Response

>NotifyRetryCount?

NotifyRetryCount = 3

Command

Response

>NotifyRetryCount = 0

NotifyRetryCount = 0

NotifyRetryPause
F800 | 9900 | 9680 | 9650

When the reader attempts to send a network notification and fails, it tries again a number of times
specified by NotifyRetryCount. The time period between these retries is specified by the
NotifyRetryPause.

 Allowed Values: Integer(0..32767)

 Default Value: 10 sec

NotifyRetryPause Examples

Command

Response

>NotifyRetryPause?

NotifyRetryPause = 10

Command

Response

>NotifyRetryPause = 60

NotifyRetryPause = 60

NotifyQueueLimit
F800 | 9900 | 9680 | 9650

The NotifyQueueLimit command allows you to specify how many failed notification messages the reader
should queue for later delivery. When notifying to a TCP socket or mail server, failed deliveries are
queued up inside the reader and retried at period intervals (specified by NotifyRetryPause). Up to 1000
notifications can be queued, and once the queue limit is reached, older messages are dropped in favor of
newer messages.

CHAPTER 4 ALIEN READER PROTOCOL

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

137

Setting NotifyQueueLimit to smaller values decreases the maximum number of messages in the queue,
and therefore how many "stale" messages are delivered once the notification channel is reestablished.
Setting NotifyQueueLimit to zero prevents any failed messages from being resent.

 Allowed Values: Integer(0..1000)

 Default Value: 1000

NotifyQueueLimit Examples

Command

Response

>NotifyQueueLimit?

NotifyQueueLimit = 1000

Command

Response

>NotifyQueueLimit = 0

NotifyQueueLimit = 0

NotifyInclude
F800 | 9900 | 9680 | 9650

The NotifyInclude command tells the NotifyMode engine whether to include the current IOList in
notification messages instead of, or in addition to, the normal TagList. It may have one of the following
values:

NotifyInclude Description

Tags

Notification messages only include the TagList. This is equivalent
to the traditional notification messages, and is the default setting.

DI Notification messages only include digital input events.

DO Notification messages only include digital output events.

DIO Notification messages only include both digital input and digital
output events (interleaved).

All Notification messages include the standard TagList, as well as all
digital I/O events.

 The default value is "Tags".

 When notification messages include both tag and I/O data, the tag data always
comes first.

 The formatting of both the TagList and IOList are specified with the NotifyFormat
command.

 Following is sample data, with NotifyFormat=Text, and NotifyInclude=All. Note that
there is no explicit division between the TagList and IOList:

#Alien RFID Reader Auto Notification Message

#ReaderName: Alien RFID Reader

#ReaderType: Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna / Multi-Protocol / 902-

928 MHz)

#IPAddress: 10.10.82.72

#CommandPort: 23

#MACAddress: 00:80:66:10:11:6A

#Time: 2007/01/22 11:25:45

#Reason: TEST MESSAGE

#StartTriggerLines: 0

#StopTriggerLines: 0

Tag: E200 3411 B801 0108 1209 0054, Disc:2007/01/22 11:25:22, Last:2007/01/22 11:25:43,

Count:20, Ant:0, Proto:2

IO:DI, Time:2007/01/22 11:25:22.343, Data:1

IO:DO, Time:2007/01/22 11:25:22.361, Data:2

#End of Notification Message

ALIEN READER PROTOCOL CHAPTER 4

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

138

 The same data, with NotifyFormat=XML:

<?xml version="1.0" encoding="UTF-8"?>

<Alien-RFID-Reader-Auto-Notification>

 <ReaderName>Alien RFID Reader</ReaderName>

 <ReaderType>Alien RFID Tag Reader, Model: ALR-9900 (Four Antenna / Multi-Protocol /

902-928 MHz)</ReaderType>

 <IPAddress>10.10.82.72</IPAddress>

 <CommandPort>23</CommandPort>

 <MACAddress>00:80:66:10:11:6A</MACAddress>

 <Time>2007/01/22 11:25:45</Time>

 <Reason>TEST MESSAGE</Reason>

 <StartTriggerLines>0</StartTriggerLines>

 <StopTriggerLines>0</StopTriggerLines>

 <Alien-RFID-Tag-List>

 <Alien-RFID-Tag>

 <TagID>E200 3411 B801 0108 1209 00546</TagID>

 <DiscoveryTime>2007/01/22 11:25:22</DiscoveryTime>

 <LastSeenTime>2007/01/22 11:25:22</LastSeenTime>

 <Antenna>0</Antenna>

 <ReadCount>2</ReadCount>

 <Protocol>2</Protocol>

 </Alien-RFID-Tag>

 </Alien-RFID-Tag-List>

 <Alien-RFID-IO-List>

 <Alien-RFID-IO>

 <Type>DI</Type>

 <Time>2007/01/22 11:25:22.343</Time>

 <Data>1</Data>

 </Alien-RFID-IO>

 <Alien-RFID-IO>

 <Type>DO</Type>

 <Time>2007/01/22 11:25:22.361</Time>

 <Data>2</Data>

 </Alien-RFID-IO>

 </Alien-RFID-IO-List>

</Alien-RFID-Reader-Auto-Notification>

NotifyInclude Examples

Command

Response

>NotifyInclude?

NotifyInclude = Tags

Command

Response

>NotifyInclude = All

NotifyInclude = All

NotifyNow
F800 | 9900 | 9680 | 9650

The NotifyNow command instructs the reader to send out an immediate notification of its TagList to the
address currently set by the NotifyAddress command.

NotifyNow Examples

Command

Response

>NotifyNow

Issuing Notify Trigger...

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

139

CHAPTER 5

Tag Programming

All Alien RFID tags support programmable ID numbers. This chapter describes the series of commands
required to program EPC-compliant ID codes and user-defined ID codes into Alien RFID tags, and details
some of the physical conditions required to carry out successful programming tasks.

Tag Memory Structure

Knowing the tag memory structure is essential for successfully programming tags and using mask
commands to acquire subsets of tags. This chapter describes the basic memory formats supported by all
Alien tag systems.

Class 1/Gen 2 Tag Memory
The basic size of a data entity in Class1, Gen2 is a word (16 bits), rather than a byte (8 bits). Class 1/Gen
2 tags contain up to four memory banks.

G2 Bank Description

Bank 0

RESERVED

Contains the Kill and Access passwords. Each is two words (4 bytes) in
length. Tags need not implement either of these passwords, in which
case the values are taken to be 0000 0000, and the corresponding
unused memory locations need not exist. Masking into Bank 0 is not
permitted.

Bank 1

EPC

Contains one CRC word, one PC word, and a flexible number of EPC
words following. See below for detailed structure.

Bank 2

TID

Contains tag identifying information, such as the allocation class
identifier (EPCglobal, or other), manufacturer information, and tag
model and versioning information.

Bank 3

USER

Unstructured scratch space for user-specific data storage. Tags need
not implement the USER bank, and the memory capacity depends on
the tag implementation.

CLASS 1, GEN 2 STRUCTURE
Current Class 1/Gen 2 tags generally contain 96 or 128 bits of programmable memory in the EPC
memory bank, although the specification allows for up to 496 EPC bits. In addition to the EPC code, the
EPC memory bank also contains 16 bits of CRC checksum, and 16 Protocol-Control (PC) bits.

 CRC PC EPC Code (or User ID Code)

Word 0 1 0 1 2 3 4 5 …

Bit 0-15 16-31 32-47 48-63 64-79 80-95 96-111 112-127 …

128-bit Class 1, Gen 2 Tag Memory Structure

The EPC Code is addressed from left to right, where the leftmost bit (the Most Significant Bit) is bit 32,
and extending out through the length of the EPC. There is no restriction on the data that resides in this
portion of the tag.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

140

The checksum is automatically calculated by the tag, over the 16 bits of the PC and the entire EPC Code.
The checksum is calculated and programmed into the tag automatically by the reader.

The Protocol-Control (PC) word encodes the number of the EPC words, (bits 0-4), followed by two
reserved bits (bit 5-6), and followed by a numbering system identifier (bits 7-15). The numbering system
identifier specifies either an EPCglobal™ header (defined by the EPC™ Tag Data Standards) or an
Application Family Identifier (defined by ISO/IEC 15961).

Programming Distance & Power Levels
Caution: It is highly recommended that you read and understand this section before
programming tags.

The term “programming” as used in this manual refers to the operations that alter the tag memory. These
include the Erase, ProgramEPC, Lock and Kill commands. These commands are discussed in some
detail later in this chapter. From the operational and software point of view, programming tag IDs is very
simple, in most cases requiring just the click of a button or the issuance of one command. However,
several variables affect programming reliability and must be properly addressed in every application.
There are three factors under your control to assure programming success in any application: application
software, attenuation, and the physical position of the tags.

Programming Power
Programming a tag requires substantially more power than reading a tag. As a result, the tag's
programming range is substantially less than its read range. Programming commands affect all tags that
receive sufficient power to execute the commands. As a result, the tag to be programmed should be
physically isolated from tags that you do not intend to program, and a mask should be set to match only
that one tag. Similarly, you should program at the minimum power that reliably programs the tag in the
given environment, so as not to affect nearby tags. A lower programming power requires a shorter
physical separation of tags.

The power received by the tag is determined by the power supplied to the antenna, the distance tag is
from the antenna, and the level of signal reflections from the environment and the object being tagged.
Environmental reflections can cause local power nulls near the tag, and it will not be programmed due to
insufficient power. Tag separation from the antenna should be as constant as possible, to minimize power
variation and to avoid special nulls due to reflection. Tag orientation with respect to the antenna should
also be controlled. In particular, when using a linear antenna the tag should be presented in the same
orientation as the antenna polarization. The power supplied to the antenna is controlled by the use of
attenuators to reduce the signal strength. The attenuator value is selected based on careful
measurements in the environment after other variables have been controlled as described above. A
variable attenuator is a useful tool in setting the final attenuation values.

Programming Problems
The most common result of poor programming is that the tag no longer reads in Global Scroll or Inventory
modes. This is due to the tag memory being erased or incompletely programmed. Tags in this state can
be read using the Verify Tag command and can be programmed using the Program Tag commands.

Typically, tag erasure without programming success (the Verify Tag command returns all 0’s) is caused
by insufficient power since the erase process requires less energy than the programming process. Power
should be increased by either decreasing attenuation or moving the tag closer to the antenna and
repeating the programming process.

Incompletely programmed tags can be caused by insufficient or excessive programming power.
Reevaluate the tag position and the signal attenuation and repeat the programming sequence.

A step attenuator is a powerful tool in evaluating programming conditions. When using the attenuator, set
it to the highest value at which you can reliably read the tag. You can then step down attenuation (raise

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

141

the power) approximately 10 dB from this value as an estimate of the proper attenuation for programming.
By varying the attenuator value you can optimize programming conditions over the range of the other
variables in your application.

Programming Commands Summary

Command Description

F
8
0
0

9
9
0
0
+

9
6
8
0

9
6
5
0

ProgProtocol
The single protocol (0, 1, 2) used in subsequent
programming operations.

✔ ✔ ✔ ✔

ProgAntenna
The antenna on which to issue programming
commands.

✔ ✔ ✔ ✔

ProgramEPC ("p") Writes an EPC code to the tag. ✔ ✔ ✔ ✔

ProgramAndLockEPC Writes and then locks the EPC bank. ✔ ✔

ProgramAccessPwd Writes the Gen2 Access password. ✔ ✔ ✔ ✔

ProgramKillPwd Writes the Gen2 Kill password. ✔ ✔ ✔ ✔

ProgramUser Writes user data to the Gen2 tag. ✔ ✔ ✔ ✔

ProgramAndLockUser Writes and then locks the User bank. ✔ ✔

LockEPC Locks a tag's EPC bank. ✔ ✔ ✔ ✔

LockAccessPwd Locks a Gen2 tag's Access password. ✔ ✔ ✔ ✔

LockKillPwd Locks a Gen2 tag's Kill password. ✔ ✔ ✔ ✔

LockUser Locks a Gen2 tag's User memory. ✔ ✔ ✔ ✔

LockUserBlocks Perma-lock individual Gen2 User memory blocks ✔ ✔

HideAlienUserBlocks
Hide/Reveal individual User memory blocks
(Higgs3 & Higgs4 tags only).

✔ ✔

UnlockEPC Unlocks a Gen2 tag's EPC bank. ✔ ✔ ✔ ✔

UnlockAccessPwd Unlocks a Gen2 tag's Access password. ✔ ✔ ✔ ✔

UnlockKillPwd Unlocks a Gen2 tag's Kill password. ✔ ✔ ✔ ✔

UnlockUser Unlocks a Gen2 tag's User memory. ✔ ✔ ✔ ✔

ProgG2LockType
The lock type (Lock, PermaLock, PermaUnlock)
used to lock Gen2 tags.

✔ ✔ ✔ ✔

ProgEPCData
The next EPC used to automatically program tags.
Was called "ProgramID".

✔ ✔ ✔ ✔

ProgG2NSI
The value that the NSI part of the PC word will be
set to when programming with the ProgramEPC
command.

✔ ✔ ✔ ✔

ProgG2AccessPwd
The Access password data used to automatically
write Gen2 Access passwords.

✔ ✔ ✔ ✔

ProgG2KillPwd
The Kill password data used to automatically write
Gen2 Kill passwords.

✔ ✔ ✔ ✔

ProgUserData
The User data used to automatically program a
Gen2 tag's User memory.

✔ ✔ ✔ ✔

ProgEPCDataInc
Which EPC programming results cause
ProgEPCData to be automatically incremented.

✔ ✔ ✔ ✔

ProgUserDataInc
Which User programming results cause
ProgUserData to be automatically incremented.

✔ ✔ ✔ ✔

ProgEPCDataIncCount Limits the number of ProgEPCData increments. ✔ ✔

ProgUserDataIncCount Limits the number of ProgUserData increments. ✔ ✔

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

142

Command Description

F
8
0
0

9
9
0
0

+

9
6
8
0

9
6
5
0

G2Erase Erases a specified portion of Gen2 tag memory ✔ ✔ ✔ ✔

Erase Erases a tag (writes zeros to EPC). ✔ ✔ ✔ ✔

Kill Kills a tag with a specified kill password. ✔ ✔ ✔ ✔

ProgAttempts The number of attempts to program a tag. ✔ ✔ ✔ ✔

ProgSuccessFormat
Determines the result format of a successful
program operation.

✔ ✔ ✔ ✔

ProgSingulate
Enables/disables a singulation check before
performing a programming operation.

✔ ✔

TagInfo Fetch information about a tag. ✔ ✔ ✔ ✔

G2Read Perform a low-level read of Gen2 tag memory. ✔ ✔ ✔ ✔

G2Write Perform a low-level write to Gen2 tag memory. ✔ ✔ ✔ ✔

ProgDataUnit Specifies the data unit size when writing Gen2 tags. ✔ ✔ ✔ ✔

ProgBlockSize
The size, in words, of data blocks when writing in
block mode.

✔ ✔

ProgBlockAlign
Get assistance when performing block writes across
block boundaries.

✔ ✔

ProgramAlienImage Programs an entire Alien tag's memory image. ✔

ProgAlienImageMap
The memory map type used when programming an
entire Alien tag's memory image

 ✔

ProgAlienImageNSI
The NSI word used when programming an entire
Alien tag's memory image.

 ✔

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

143

Program, Erase, and Verify Functions

The ProgramXXXX commands program a user-specified data into the tag's memory. The Erase
command erases all data in the tag memory, setting all the tag EPC data to zero.

Programming functions always act on the single antenna specified by ProgAntenna. In multi-protocol
readers, you specify a single tag protocol to use when programming with the ProgProtocol command.

ProgramEPC
F800 | 9900 | 9680 | 9650

The ProgramEPC command allows the user to write a new EPC (Tag ID) into a tag. Once the command
is issued, the reader verifies the presence of a tag, programs it, then reads back the tag memory to verify
that the program command worked properly.

 Tags that have a locked EPC cannot be re-programmed. The tag’s EPC bank must
be Unlocked first.

 The ProgramEPC command expects you to supply an even number of hexadecimal
bytes separated by spaces, representing the tag memory to program.

 Class1/Gen2 tags have a maximum EPC length, but smaller EPCs may still be
programmed.

 The format of the response to a successful ProgramEPC command can be changed
with the ProgSuccessFormat command.

 Programming can be performed using AutoMode by setting AutoAction=Program.

 In earlier reader firmware, this command was called simply "Program". In earlier
reader models, this command was called "Program Tag". These command names
still function for backward compatibility.

 If no argument is given in the ProgramEPC command, the reader instead uses the
data specified by the ProgEPCData command (below).

 If the EPC to be programmed already matches the EPC stored in the tag, the
ProgramEPC command simply returns a successful response, even if the tag is
locked and cannot be programmed.

ProgramEPC Examples

Condition Exactly one tag in field of view. Tag read is strong.

Program a Class I tag with a new 64-bit ID.

Command

Response

>ProgramEPC = 01 02 03 04 05 06 07 08 09 0A 0B 0C

ProgramEPC = 01 02 03 04 05 06 07 08 09 0A 0B 0C

Condition Tag on fringe of read range.

Command

Response

> ProgramEPC = 01 02 03 04 05 06 07 08 09 0A 0B 0C

Error 134: No tag found.

Condition Tag is Locked

Command

Response

> ProgramEPC = 01 02 03 04 05 06 07 08 09 0A 0B 0C

Error 137: Tag Is locked.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

144

ProgramAndLockEPC
F800 | 9900 | 9680 | 9650

The ProgramAndLockEPC command allows the user to write a new EPC code and lock the tag's EPC in
one step. If the selected Class1/Gen2 lock type specified by ProgG2LockType is Lock (not PermaLock or
PermaUnlock), then the Access password is also written to the tag. This is because simply locking the
EPC bank doesn't protect that data unless there is a non-zero Access password in the tag. The reader
uses the value given by ProgG2AccessPwd when writing the Access password. It is also recommended
that you set the AcqG2AccessPwd to the same value, in order to facilitate this double operation.

 You provide the tag's new EPC code as an argument to the ProgramAndLockEPC
command. If no data is given, the reader uses the ProgEPCData value instead.

 The ProgramAndLockEPC operation can be performed using AutoMode by setting
AutoAction=ProgramAndLockEPC.

 If the EPC to be programmed already matches the EPC stored in the tag, the
ProgramAndLockEPC command simply returns a successful response, even if the
tag is locked and cannot be programmed.

ProgramAndLockEPC Examples

Command

Response

// Set up

>ProgG2LockType = Lock

>ProgG2AccessPwd = F1 F2 F3 F4

>AcqG2AccessPwd = F1 F2 F3 F4

// Command with argument

>ProgramAndLockEPC = 01 02 03 04 05 06 07 08 09 0A 0B 0C

ProgramAndLockEPC = 0102 0304 0506 0708 090A 0B0C

Command

Response

// With no argument

>ProgEPCData = 01 02 03 04 05 06 07 08 09 0A 0B 0C

>ProgramAndLockEPC

ProgramAndLockEPC = 0102 0304 0506 0708 090A 0B0C

ProgramAccessPwd
F800 | 9900 | 9680 | 9650

The ProgramAccessPwd command allows the user to write a new Access password to a Class1/Gen2
tag. A tag with a non-zero Access password will not allow memory banks to be locked or unlocked, or
data in protected regions to be modified, unless the correct Access password is provided by the user
(though the AcqG2AccessPwd command).

 You supply the tag's new Access password (four bytes) as an argument to the
ProgramAccessPwd command. If no data is given, the reader uses the
ProgG2AccessPwd value instead.

 Not all Class1/Gen2 tags may provide memory for an Access password. Those tags
act as if they have an Access password of "0000 0000".

 In order to hide the Access password from others, you need to lock the AccessPwd
field after writing the Access password to it.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

145

ProgramAccessPwd Examples

Command

Response

// With an argument

>ProgramAccessPwd = 01 02 03 04

ProgramAccessPwd = 0102 0304

Command

Command

Response

// Without an argument

>ProgG2AccessPwd = 01 02 03 04

>ProgramAccessPwd

ProgramAccessPwd = 0102 0304

ProgramKillPwd
F800 | 9900 | 9680 | 9650

The ProgramKillPwd command allows the user to write a new Kill password to a Class1/Gen2 tag. Tags
without a Kill password cannot be killed, and tags with a non-zero Kill password can only be killed if the
stored password is provided in the Kill command.

 You provide the tag's new Kill password (four bytes) as an argument to the
ProgramKillPwd command. If no data is given, the reader uses the ProgG2KillPwd
value instead.

 Not all Class1/Gen2 tags support a Kill password. These tags may not be killed.

 In order to hide the Kill password from others, you need to lock the KillPwd field after
writing the Kill password to it.

ProgramKillPwd Examples

Command

Response

// With an argument

> ProgramKillPwd = FA FB FC FD

ProgramKillPwd = FAFB FCFD

Command

Response

// Without an argument

>ProgG2KillPwd = FA FB FC FD

> ProgramKillPwd

ProgramKillPwd = FAFB FCFD

ProgramUser
F800 | 9900 | 9680 | 9650

The ProgramUser command allows the user to program specified User data into a Class1/Gen2 tag.

 While it is possible to determine (bit 15 of the PC word) if User memory exists on a
tag, this method only works if there is non-zero data in the first word of its User bank.
There is no way of determining how much User memory a tag has, without
attempting to access the User memory first.

 You provide the tag's new User memory as an argument to the ProgramUser
command. If no data is provided, the reader uses the ProgUserData value instead.

 User memory must be written in word (2-byte) increments, so any supplied data must
consist of an even number of bytes.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

146

ProgramUser Examples

Command

Response

// With an argument

>ProgramUser = DE AD BE EF CA FE C0 ED

ProgramUser = DEAD BEEF CAFÉ C0ED

Command

Response

// Without an argument

>ProgUserData = F1 F2 F3 F4 F5 F6 F7 F8

> ProgramUser

ProgramUser = F1F2 F3F4 F5F6 F7F8

Command

Response

// Can read user data with generic "G2Read" command.

// Bank=3, wordPtr=0, wordCnt=4

>G2Read = 3, 0, 4

G2Read = F1 F2 F3 F4 F5 F6 F7 F8

ProgramAndLockUser
F800 | 9900 | 9680 | 9650

The ProgramAndLockUser command allows the user to write new User data and lock the tag's User bank
in one step.

If the selected Class1/Gen2 lock type specified by ProgG2LockType is Lock (not PermaLock or
PermaUnlock), then the Access password is also written to the tag. This is because simply locking the
EPC bank doesn't protect that data unless there is a non-zero Access password in the tag. The reader
uses the value given by ProgG2AccessPwd when writing the Access password. It is also recommended
that you set the AcqG2AccessPwd to the same value, in order to facilitate this double operation.

 You provide the tag's new User data as an argument to the ProgramAndLockUser
command. If no data is given, the reader uses the ProgUserData value instead.

ProgramAndLockUser Examples

Command

Response

// Command with argument

>ProgramAndLockUser = F1 F2 F3 F4 F5 F6 F7 F8

ProgramAndLockUser = F1F2 F3F4 F5F6 F7F8

Command

Response

// With no argument

>ProgUserData = F1 F2 F3 F4 F5 F6 F7 F8

> ProgramAndLockUser

ProgramAndLockUser = F1F2 F3F4 F5F6 F7F8

G2Erase
F800 | 9900 | 9680 | 9650

The G2Erase command erases (sets to 00) a specified portion of tag memory. You indicate which bank of
memory, a word pointer for the first word to erase, and the number of words to erase. If the tag
implements the Gen2 "BlockErase" command, it will write zeros to the indicated memory locations.

The format of the G2Erase command is:

G2Erase = <bank> <wordPtr> <wordLen>

 <bank> must be 0-3.

 <wordPtr> must be 0-2097151.

 <wordLen> must be 1-32 (issue successive commands to erase more).

 G2Erase is similar to Erase (see below), except Erase only writes zeros to the entire
EPC, and applies to Gen1 tags as well..

 You cannot erase memory that has been locked, unless you have the correct Access
password.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

147

 If ProgDataUnit=Word, the G2Erase command is fundamentally the same as a
G2Write of all zeros. When ProgDataUnit=Block, the Gen2 "BlockErase" command is
issued instead, which is faster, but not supported by all tags.

G2Erase Example

Command

Response

Command

Command

Command

// Erase both the Kill and Access passwords (four words in bank 0)

>G2Erase = 0 0 4

G2Erase = Success!

// Compare with Program___Pwd, and G2Write

>ProgramKillPwd = 00 00 00 00

>ProgramAccessPwd = 00 00 00 00

>G2Write = 0 0 00 00 00 00 00 00 00 00

Erase
F800 | 9900 | 9680 | 9650

The Erase command attempts to erase the EPC memory of a tag in the reader’s field of view. A tag
affected by this command has its entire EPC tag memory set to zero. Once the command is issued, the
reader verifies the presence of a tag, erases it, then reads back the tag memory to verify that the erase
command worked properly.

 In Class1/Gen2, only one tag is erased, even if more than one tag is present.

 Tags that have a locked EPC bank cannot be erased.

 Don't confuse this command with the G2Erase command (above). G2Erase is a
Gen2 command with more flexibility than Erase.

 Earlier readers used the command "Erase Tag", and current readers accept this for
backward compatibility.

Erase Examples

Command

Response

>Erase

Erase = Success!

Command

Response

// Tag's EPC is locked

>Erase

Error 137: Tag is locked.

Lock, Unlock, and Kill Functions

Class1/Gen2 tags support three modes of password-based locking (Lock, PermaLock, PermaUnlock), on
each of the tag's memory banks/fields (where supported): Kill Pwd, Access Pwd, EPC, User. A locked
field may be unlocked, as long as the correct Access password is provided, and the field wasn't locked
with a PermaLock or PermaUnlock lock type. Some tags may support PermaLocking individual blocks of
User memory, and Alien Higgs3 & Higgs4 tags allow you to lock blocks of User memory in such a way
that they cannot be read back without knowing the Access password. A Gen2 tag may be killed, provided
it has a non-zero Kill Pwd, and the correct Kill password is provided. Killing a Gen2 tag renders it
permanently inoperable.

LockEPC
F800 | 9900 | 9680 | 9650

A tag's EPC can be locked to prevent its memory from being changed.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

148

 The Class1/Gen2 LockEPC command takes a four-byte Access password, which
must match the Access Pwd that already exists in the tag's memory. This Access
password is not written to tag memory, but is required to overcome the tag's built-in
security mechanism. In order to write the tag's Access Pwd field, use the
ProgramAccessPwd command (below), or use ProgramAndLockEPC (above). If no
argument is provided to the LockEPC command, the reader uses the value given by
AcqG2AccessPwd instead.

 Once a Class 1/Gen 2 tag's EPC is locked, it may be unlocked, provided the original
lock type wasn't PermaLock or PermaUnlock, and the correct Access password is
provided.

 Class 1/Gen2 protocol allows for three mask types – Lock, PermaLock, and
PermaUnlock. The type of locking that is performed is given by the ProgG2LockType
command (below).

 Earlier reader firmware used the command "Lock Tag", which is still accepted for
backward compatibility.

 Even earlier versions of reader firmware used the command "Lock" instead of
"LockEPC", which is also still accepted.

C1G2 LockEPC Example

Command

Response

// With the current Access Pwd as an argument

>LockEPC = 01 02 03 04

LockEPC = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

>LockEPC

LockEPC = Success!

LockAccessPwd
F800 | 9900 | 9680 | 9650

Locking the Access password of a Class1/Gen2 tag prevents the Access password from being changed
(unless you provide the same password as the Access Key), or from being read back from the tag with a
low-level read command.

 The Class1/Gen2 LockAccessPwd command takes a four-byte Access password,
which must match the Access Pwd that already exists in the tag's memory. This
Access password is not written to tag memory, but is required to overcome the tag's
built-in security mechanism. If no argument is provided to the LockAccessPwd
command, the reader uses the value given by AcqG2AccessPwd instead.

 In order to write the tag's Access Pwd field, use the ProgramAccessPwd command.

 Not all Class1/Gen2 tags implement the Access password.

LockAccessPwd Example

Command

Response

// With the current Access Pwd as an argument

>LockAccessPwd = 01 02 03 04

LockAccessPwd = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

>LockAccessPwd

LockEPC = Success!

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

149

LockKillPwd
F800 | 9900 | 9680 | 9650

Locking the Kill password of a Class1/Gen2 tag prevents the Kill password from being changed (unless
you provide the correct Access key), or from being read back from the tag with a low-level read
command.

 The Class1/Gen2 LockKillPwd command takes a four-byte Access password, which
must match the Access Pwd that already exists in the tag's memory. This Access
password is not written to tag memory, but is required to overcome the tag's built-in
security mechanism. If no argument is provided to the LockKillPwd command, the
reader uses the value given by AcqG2AccessPwd instead.

 In order to write the tag's Kill Pwd field, use the ProgramKillPwd command.

 Not all Class1/Gen2 tags implement the Kill password.

LockKillPwd Example

Command

Response

// With the current Access Pwd as an argument

> LockKillPwd = 01 02 03 04

LockKillPwd = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

> LockKillPwd

LockKillPwd = Success!

LockUser
F800 | 9900 | 9680 | 9650

Locking the User bank of a Class1/Gen2 tag prevents the User memory from being changed (unless you
provide the same password as the Access Key). Locking the User bank does not prevent other users
from reading the User data.

 The Class1/Gen2 LockUser command takes a four-byte Access password, which
must match the corresponding Access Pwd that already exists in the tag's memory.
This Access password is not written to tag memory, but is required to overcome the
tag's built-in security mechanism. If no argument is provided to the LockUser
command, the reader uses the value given by AcqG2AccessPwd instead.

 In order to write the tag's User data, use the ProgramUser or ProgramAndLockUser
commands.

 Not all Class1/Gen2 tags implement User memory.

LockUser Example

Command

Response

// With the current Access Pwd as an argument

> LockUser = 01 02 03 04

LockUser = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

> LockUser

LockUser = Success!

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

150

LockUserBlocks
F800 | 9900 | 9680 | 9650

One optional feature in the Gen2 protocol gives you the ability to permalock individual blocks of User
memory (called BlockPermaLock). Alien Higgs3 and Higgs4 tags support this feature, and you set these
permalocks with the LockUserBlocks reader command.

Please read the Gen2 protocol specification for details on this feature, and the ramifications of
permalocking blocks of User memory. Once something is permalocked, it can never be changed or
unlocked again, and the interaction between block permalocks and User bank locks can be complicated.

The Gen2 protocol allows tag vendors to subdivide the User memory bank into blocks (the same blocks
referred to in the HideAlienUserBlocks command, below), and how much data goes into each block is
determined by the vendor. Alien Higgs3 and Higgs4 tags have blocks four words (8 bytes, or 64 bits) in
size, so the maximum 512-bits of available User memory is subdivided into eight blocks.

The LockUserBlocks command takes three arguments – a decimal block pointer, followed by two hex
bytes that are bitmask representations of the desired permalock states of each block of User memory. A
"1" bit indicates that you wish to permalock the associated User block. A "0" bit means leave the current
permalock state (locked or unlocked) alone.

LockUserBlocks = <blockPtr> <blockmask1> <blockmask2>

The underlying Gen2 command allows the reader to configure User block permalocks in groups of sixteen
blocks at a time, so the LockUserBlocks command requires two complete <blockmask> bytes (16 bits
total). The <blockPtr> allows you to address higher groups of 16 blocks, and should therefore be a
multiple of 16 (0, 16, 32, etc.).

Alien Higgs3 tags implement only eight blocks of User data (Higgs4 have four blocks), so the <blockPtr>
should always be zero and the <blockmask2> value should also be zero. Attempting to permalock User
blocks that don't exist results in a tag "memory overrun" error and the entire operation will fail.

 Not all Class1/Gen2 tags implement User memory, or the BlockPermaLock feature.

 You may issue the LockUserBlocks command repeatedly on the same set of User
blocks – locking individual blocks each time.

 Block permalocks are irreversible – use with caution!

LockUserBlocks Example

Command

Response

Command

Response

Command

Response

Command

Response

// Permalock the first two User blocks (C0 = 11000000)

>LockUserBlocks = 0 C0 00

LockUserBlocks = Success!

// Write 3 blocks

>ProgramUser = A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8

C1 C2 C3 C4 C5 C6 C7 C8

Error 137: Tag is locked.

// Still can write to block #3 (word #8)

>G2Write = 3 8 C1 C2 C3 C4 C5 C6 C7 C8

G2Write = Success!

>G2Read = 3 0 0

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

Command

Response

// Now additionally lock the 3
rd
 User block (20 = 00100000)

>LockUserBlocks = 0 20 00

LockUserBlocks = Success!

// The first three User blocks are now permalocked.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

151

HideAlienUserBlocks
F800 | 9900 | 9680 | 9650

Alien Higgs3 and Higgs4 tags implement a feature which allows you to lock individual blocks of User
memory so that they cannot be read back without knowing the Access password. These "read locks"
allow you to store sensitive data in the tag, which only you and trusted partners can read or modify.

Alien Higgs3 tags subdivide User memory into 4-word blocks (the same blocks referred to in the
LockUserBlocks command, above). The maximum amount of User memory a Higgs3 tag can have is 512
bits, which corresponds to eight blocks. Alien Higgs4 tags subdivide User memory into 2-word blocks.
The maximum amount of User memory a Higgs4 tag can have is 128 bits which corresponds to four
blocks.

HideAlienUserBlocks takes a single hex byte as an argument, and it is a bitmask representing the desired
read locks on all eight User blocks. The most-significant bit in the bitmask represents the first User block,
and so on, which means that to place a read lock on block #1, the bitmask would be 80 (10000000binary),
not 01 (00000001binary).

 Read locks are only enforced if the tag has a non-zero Access password stored in it.

 Only Alien Higgs3 and Higgs4 tags implement this feature.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

152

HideAlienUserBlocks Example

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Read 1st three blocks (12 words) of User data

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

// Read-lock the 1st and 3rd blocks (A0 = 10100000)

>HideAlienUserBlocks = A0

HideAlienUserBlocks = Success!

// No Access Pwd yet, so it is still readable:

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

// Write non-zero Access Pwd and read again

>ProgramAccessPwd = 11 22 33 44

ProgramAccessPwd = 1122 3344

>G2Read = 3 0 12

Error 260: (Tag Error) Memory locked.

// Can read block #2 (starting at word #4)

>G2Read = 3 4 4

G2Read = 21 22 23 24 25 26 27 28

// …but not blocks #1,3

>G2Read = 3 0 4

Error 260: (Tag Error) Memory locked.

>G2Read = 3 8 4

Error 260: (Tag Error) Memory locked.

// Supplying the correct Access Pwd lets us see everything

>AcqG2AccessPwd = 11 22 33 44

AcqG2AccessPwd = 11 22 33 44

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

Command

Response

Command

Response

Command

Response

// Reveal the hidden blocks

>HideAlienUserBlocks = 00

HideAlienUserBlocks = Success!

// Don’t need the password now

>AcqG2AccessPwd = 0 0 0 0

AcqG2AccessPwd = 00 00 00 00

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

UnlockEPC
F800 | 9900 | 9680 | 9650

The UnlockEPC command unlocks a Class1/Gen2 tag's EPC memory bank.

 The UnlockEPC command takes a four-byte Access password, which must match the
Access Pwd that already exists in the tag's memory. This Access password is not
written to tag memory, but is required to overcome the tag's built-in security
mechanism. If no argument is provided to the UnlockEPC command, the reader uses
the value given by AcqG2AccessPwd instead.

 Class 1/Gen 2 tags whose EPC bank has been locked with the PermaLock lock type
may not be unlocked.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

153

UnlockEPC Example

Command

Response

// With the current Access Pwd as an argument

>UnlockEPC = 01 02 03 04

UnlockEPC = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

>UnlockEPC

UnlockEPC = Success!

UnlockAccessPwd
F800 | 9900 | 9680 | 9650

The UnlockAccessPwd command unlocks a Class1/Gen2 tag's Access Pwd field. This command does
not apply to Class1/Gen1 tags.

 The UnlockAccessPwd command takes a four-byte Access password, which must
match the corresponding Access Pwd that already exists in the tag's memory. This
Access password is not written to tag memory, but is required to overcome the tag's
built-in security mechanism. If no argument is provided to the UnlockAccessPwd
command, the reader uses the value given by AcqG2AccessPwd instead.

 Class 1/Gen 2 tags whose Access Pwd has been locked with the PermaLock lock
type may not be unlocked.

 The Access password is not a mandatory Class1/Gen2 feature - some tags may not
implement it.

UnlockAccessPwd Example

Command

Response

// With the current Access Pwd as an argument

> UnlockAccessPwd = 01 02 03 04

UnlockAccessPwd = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

> UnlockAccessPwd

UnlockAccessPwd = Success!

UnlockKillPwd
F800 | 9900 | 9680 | 9650

The UnlockKillPwd command unlocks a Class1/Gen2 tag's Kill Pwd field. This command does not apply
to Class1/Gen1 tags.

 The UnlockKillPwd command takes a four-byte Access password, which must match
the corresponding Access Pwd that already exists in the tag's memory. This Access
password is not written to tag memory, but is required to overcome the tag's built-in
security mechanism. If no argument is provided to the UnlockKillPwd command, the
reader uses the value given by AcqG2AccessPwd instead.

 Class 1/Gen 2 tags whose Kill Pwd has been locked with the PermaLock lock type
may not be unlocked.

 The Kill password is not a mandatory Class1/Gen2 feature - some tags may not
implement it.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

154

UnlockKillPwd Example

Command

Response

// With the current Access Pwd as an argument

> UnlockKillPwd = 01 02 03 04

UnlockKillPwd = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

> UnlockKillPwd

UnlockKillPwd = Success!

UnlockUser
F800 | 9900 | 9680 | 9650

The UnlockUser command unlocks the User bank of a Class1/Gen2 tag. This command does not apply to
Class1/Gen1 tags.

 The UnlockUser command takes a four-byte Access password, which must match
the corresponding Access Pwd that already exists in the tag's memory. This Access
password is not written to tag memory, but is required to overcome the tag's built-in
security mechanism. If no argument is provided to the UnlockUser command, the
reader uses the value given by AcqG2AccessPwd instead.

 Class 1/Gen 2 tags whose User bank has been locked with the PermaLock lock type
may not be unlocked.

 User memory is not a mandatory Class1/Gen2 feature - some tags may not
implement it.

UnlockUser Example

Command

Response

// With the current Access Pwd as an argument

> UnlockUser = 01 02 03 04

UnlockUser = Success!

Command

Response

// Without the current Access Pwd argument

>AcqG2AccessPwd = 01 02 03 04

> UnlockUser

UnlockUser = Success!

HideAlienUserBlocks
F800 | 9900 | 9680 | 9650

Alien Higgs3 tags implement a feature which allows you to lock individual blocks of User memory so that
they cannot be read back without knowing the Access password. These "read locks" allow you to store
sensitive data in the tag, which only you and trusted partners can read or modify.

Alien Higgs3 tags subdivide User memory into 4-word blocks (the same blocks referred to in the
LockUserBlocks command, above). The maximum amount of User memory a Higgs3 tag can have is 512
bits, which corresponds to eight blocks.

HideAlienUserBlocks takes a single hex byte as an argument, and it is a bitmask representing the desired
read locks on all User blocks. The most-significant bit in the bitmask represents the first User block, and
so on, which means that to place a read lock on block #1, the bitmask would be 80 (10000000), not 01
(00000001).

 Read locks are only enforced if the tag has a non-zero Access password stored in it.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

155

 Only Alien Higgs3 and Higgs4 tags implement this feature.

HideAlienUserBlocks Example

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Read 1
st
 three blocks (12 words) of User data

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

// Read-lock the 1
st
 and 3

rd
 blocks (A0 = 10100000)

>HideAlienUserBlocks = A0

HideAlienUserBlocks = Success!

// No Access Pwd yet, so it is still readable:

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

// Write non-zero Access Pwd and read again

>ProgramAccessPwd = 11 22 33 44

ProgramAccessPwd = 1122 3344

>G2Read = 3 0 12

Error 260: (Tag Error) Memory locked.

// Can read block #2, but not blocks #1,3

>G2Read = 3 4 4

G2Read = 21 22 23 24 25 26 27 28

>G2Read = 3 0 4

Error 260: (Tag Error) Memory locked.

>G2Read = 3 8 4

Error 260: (Tag Error) Memory locked.

// Supplying the correct Access Pwd lets us see it

>AcqG2AccessPwd = 11 22 33 44

AcqG2AccessPwd = 11 22 33 44

>G2Read = 3 0 12

G2Read = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 C1 C2 C3

C4 C5 C6 C7 C8

Kill
F800 | 9900 | 9680 | 9650

When applied to a Class1/Gen2 tag, the tag is permanently disabled – it won't respond to any subsequent
reader commands. Class1/Gen2 tags can only be killed if they implement the Kill Pwd, the current Kill
Pwd is non-zero, and the user includes the correct Kill Pwd in the Kill command.

Earlier readers used the command, "Kill Tag", which newer readers also accept for backward
compatibility.

 You can specify the full tag EPC followed by the four-byte Kill Password that was
previously written to the tag with the ProgramKillPwd command. Alternatively, if you
leave off the EPC and just provide the four-byte Kill Password, the reader attempts to
kill the first Class1/Gen2 tag it finds. If you use the Kill command without arguments,
the reader attempts to kill the first Class1/Gen2 tag it finds, using the Kill password
you specify with the ProgG2KillPwd command.

 Access Key is not required, just the Kill Pwd.

 Tag must have a non-zero Kill Pwd written already.

 Tag is rendered permanently inoperative.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

156

C1G2 Kill Example
Condition EPC is B0 B0 11 11 22 22 33 33 44 44 55 55

Programmed Kill password is 0A 0B 0C 0D

Command

Response

Command

Response

Command

Response

Command

Response

// Specify EPC to kill and its kill password

>Kill = B0 B0 11 11 22 22 33 33 44 44 55 55 0A 0B 0C 0D

Kill = Success!

// Specify just the kill password (kills first tag it finds)

>Kill = 0A 0B 0C 0D

Kill = Success!

// Preload kill password to use, then Kill without arguments

>ProgG2KillPwd = 0A 0B 0C 0D

ProgG2KillPwd = 0A 0B 0C 0D

>Kill

Kill = Success!

Programming Configuration and Data Storage Commands

The following "ProgXXXX" commands allow you to configure key parameters which govern all
programming operations, and preset certain data fields to allow for "argument-less" programming
operations, including automatic incrementing of EPC or User data. These commands allow programming
operations to occur in AutoMode, when the reader must have all of the required data up-front in order to
be able to operate independently.

The two most important of these commands are the ProgProtocol and ProgAntenna commands.

ProgProtocol
F800 | 9900 | 9680 | 9650

For readers that support programming in more than one air protocol, the reader must be told ahead of
time which protocol to use in programming operations. You do this with the ProgProtocol command. In
contrast to the TagType command (which is a bit mask of protocols to use during a tag read), the
ProgProtocol takes a value indicating the single protocol to use.

The following values have been used at some point, but current Alien readers only support the Class
1/Gen 2 standard:
 0 = Class 0
 1 = Class 1/Gen 1
 2 = Class 1/Gen 2 (default)

 It is recommended when you change the ProgProtocol, that you also change the
TagType setting to includes the selected ProgProtocol. This way after you perform a
programming operation, if you subsequently use a "get TagList" command to verify,
you are reading with the same protocol used to program.

ProgProtocol Examples

Command

Response

>ProgProtocol?

ProgProtocol = 2

Command

Response

>ProgProtocol = 1

ProgProtocol = 1

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

157

ProgAntenna
F800 | 9900 | 9680 | 9650

Programming tags requires a controlled, repeatable RF environment (see previous section titled,
"Programming Distance and Power Levels"), and in most cases, programming commands can potentially
affect all the tags in the RF field. For this reason, rather than using the AntennaSequence to indicate
which antenna(s) to issue programming commands on, you use the ProgAntenna attribute instead.

All programming commands are issued on the antenna port specified by ProgAntenna, regardless of the
current AntennaSequence value.

 Allowed Values (reader model dependent): 0..MaxAntenna or,

if the reader supports antenna multiplexor (e.g. ALR-F800), 0..MaxAntenna (reader

antennas) or 10-17, 20-27, 30-37, 40-47 (multiplexor antennas attached to

the reader antenna ports 0-3 correspondingly)

 Default Value: 0

 Only one antenna value is allowed for ProgAntenna, as opposed to the
AntennaSequence, which can take a list of antenna numbers.

 It is recommended when setting the ProgAntenna, that you also set an
AntennaSequence value that includes the selected ProgAntenna. This way after you
perform a programming operation, if you subsequently use a "get TagList" command
to verify, you are reading on the same antenna used to program.

ProgAntenna Examples

Command

Response

>ProgAntenna?

ProgAntenna = 0

Command

Response

>ProgAntenna = 2

ProgAntenna = 2

ProgG2NSI
F800 | 9900 | 9680 | 9650

The ProgG2NSI parameter allows programming custom NSI values of the tag's PC word when using the
ProgramEPC command. The parameter value consists of two bytes in hex format to combine into 9 bits of
NSI. An NSI value greater than 0x01FF indicates that there is no need to change the NSI part of the PC
word. The format is as follows:

 ProgG2NSI = <hexbyte1> <hexbyte2>

where <hexbyte1,2> is between 0x00 and 0xFF. If the <hexbyte1> value is greater than 1 (i.e. the

NSI value is greater than 0x01FF) then the NSI part of the PC word will not be changed during

programming. The default value is 'FF FF'

 Value supplied must be 2 bytes in hexadecimal format.

 The default value of ProgG2NSI is 'FF FF'.

 If the value of the first byte is greater than 1 then the NSI part of the PC word will not
be changed during programming.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

158

ProgG2NSI Examples

Command

Response

>ProgG2NSI?

ProgG2NSI = FF FF

Command

Response

>ProgG2NSI = 01 23

ProgG2NSI = 01 23

// look at existing NSI value (bank #1, word #1)

>G2Read = 1 1 1

G2Read = 30 00

// NSI is all zeros

// program the tag

>ProgramEPC

ProgramEPC = 0102 0304 0506 0708 090A 0B0C

// verify that the NSI part of the PC word has changed

>G2Read = 1 1 1

G2Read = 31 23

// NSI is set to 0x123

ProgEPCData
F800 | 9900 | 9680 | 9650

The ProgEPCData value is used when the ProgramEPC and ProgramAndLockEPC commands are used
without arguments, as well as in AutoMode when a program operation has been selected as the
AutoAction, such as "ProgramEPC" or "ProgramAndLockEPC". This command allows you to specify the
next EPC code to program into a tag.

 Value supplied should be an even number of bytes for Class1/Gen2 (max EPC length
depends on tag implementation).

 The default ProgEPCData is 00 00 00 00 00 00 00 00 00 00 00 00.

 The value may be optionally incremented (in a hexadecimal fashion) following the
operation, depending on the ProgEPCDataInc setting.

 Earlier readers used the command "ProgramID" instead, which is still accepted for
backward compatibility.

 The special case of "ProgEPCData = None" causes the reader to "clear" the tag's
EPC when it programs. This sets the EPC length to zero, so that the tag has no EPC
(the factory state for EPC tags, according to the Gen2 specification). The tag still
responds to inventories, but the TagList entry will not show an EPC code.

ProgEPCData Examples

Command

Response

>ProgEPCData = 01 23 45 67 89 AB CD EF

ProgEPCData = 01 23 45 67 89 AB CD EF

Command

Response

>ProgEPCData?

ProgEPCData = 01 23 45 67 89 AB CD EF

ProgUserData
F800 | 9900 | 9680 | 9650

The ProgUserData value is used when the ProgramUser command is used without an argument. It is
simply a shortcut placeholder for data which allows you to write the same User data to multiple tags
without having to enter the same data each time.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

159

 Value supplied must be an even number of bytes. The maximum length is

determined by the tag implementation.

 The default ProgUserData is 00 00.

 The value may be optionally incremented (in a hexadecimal fashion) following a
ProgramUser operation, depending on the ProgUserDataInc value.

ProgUserData Examples

Command

Response

>ProgUserData?

ProgUserData = 00 00

Command

Response

>ProgUserData = 01 23 45 67 89 AB CD EF

ProgUserData = 01 23 45 67 89 AB CD EF

ProgEPCDataInc
F800 | 9900 | 9680 | 9650

The ProgEPCDataInc command allows you to specify under which conditions the ProgEPCData value

is incremented, either following a ProgramEPC command, or when using AutoMode with a program

operation selected as the AutoAction, such as "ProgramEPC".

Value Description

OFF ProgEPCData is never incremented.

Success ProgEPCData is incremented only when ProgramEPC succeeds.

Fail ProgEPCData is incremented only when ProgramEPC fails.

Always ProgEPCData is incremented after each ProgramEPC command.

Write

ProgEPCData is incremented only when a write operation is attempted.
This reduces the number of 'false' increments because the data value is not
incremented in cases when there are no tags in the field or a tag was not singulated.
This option is not supported on the ALR-9680 & 9650.

This command provides more functionality than the older, deprecated ProgIncrementOnFail

command, but ProgIncrementOnFail has been retained for backward compatibility. The two

commands are coupled, in that if you set a ProgEPCDataInc value that causes failures to increment

("Fail" or "Always"), then ProgIncrementOnFail is set to ON, and if you set a ProgEPCDataInc

value that causes failures to not increment ("OFF" or "Success"), then ProgIncrementOnFail is set to

OFF. The reverse is also true – changing the ProgIncrementOnFail may have a corresponding effect

on the ProgEPCDataInc value.

 The default ProgEPCDataInc value is Success.

 ProgEPCDataInc is incremented in a hexadecimal fashion.

ProgEPCDataInc Examples

Command

Response

>ProgEPCDataInc?

ProgEPCDataInc = Success

Command

Response

>ProgEPCDataInc = Always

ProgEPCDataInc = Always

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

160

ProgUserDataInc
F800 | 9900 | 9680 | 9650

The ProgUserDataInc command allows you to specify under which conditions the ProgUserData value is
incremented following the ProgramUser command.

Value Description

OFF ProgUserData is never incremented.

Success ProgUserData is incremented only when ProgramUser succeeds.

Fail ProgUserData is incremented only when ProgramUser fails.

Always ProgUserData is incremented after each ProgramUser command.

Write

ProgUserData is incremented only when a write operation is attempted.
This reduces the number of 'false' increments because the data value is not
incremented in cases when there are no tags in the field or a tag was not singulated.
This option is not supported on the ALR-9680 & 9650.

 The default value is Success.

 ProgUserData is incremented in a hexadecimal fashion.

ProgUserDataInc Examples

Command

Response

>ProgUserDataInc?

ProgUserDataInc = Success

Command

Response

>ProgUserDataInc = OFF

ProgUserDataInc = OFF

ProgEPCDataIncCount
F800 | 9900 | 9680 | 9650

The ProgEPCDataIncCount command limits the number of ProgEPCData increments:

 ProgEPCDataIncCount = <count>

where the value of <count> is as follows:

-1 (default) : keep incrementing with no limit.

 0 : stop incrementing and do not allow programming until the counter is

 reset to -1 or to a positive value.

 1 to 86400000: number of increments left.

The counter cannot be saved with the 'Save' command, it is always initialized to -1 on reader startup.

The current value of the counter indicates the number of increments left. Each time ProgEPCData is

incremented, the ProgEPCDataInc is reduced by one, until it reaches zero.

When you program in manual mode (using the ProgramEPC command) and the counter hits 0, any

attempt to program a tag will result in an error unless ProgEPCDataInc is set to OFF. When you

program in AutoMode and the counter hits 0, a notification is sent (NotifyMode must be turned ON) that

the counter has reached 0 and then AutoMode gets turned OFF.

Note that AutoMode turns OFF without an explicit user command. This is similar to the behavior of the

NotifyRetryCount when sending notification will cease after the NotifyRetryCount number of

retries.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

161

If AutoMode is turned ON without resetting the counter it will perform one AutoAction cycle and then

will turn itself OFF.

This behavior only applies to the AutoAction = ProgramXXXX options.

ProgEPCDataIncCount Examples

Command

Response

> ProgEPCDataIncCount?

ProgEPCDataIncCount = -1

Command

Response

> ProgEPCDataIncCount = 100

ProgEPCDataIncCount = 100

ProgUserDataIncCount
F800 | 9900 | 9680 | 9650

The ProgUserDataIncCount command limits the number of ProgUserData increments.

 ProgUserDataIncCount = <count>

where the value of <count> is as follows:

-1 (default) : keep incrementing with no limit.

 0 : stop incrementing and do not allow programming until the counter is

 reset to -1 or to a positive value.

 1 to 86400000: number of increments left.

The counter cannot be saved with the 'Save' command, it is always initialized to -1 on reader startup.

The current value of the counter indicates the number of increments left. Each time ProgUserData is

incremented, the ProgUserDataInc is reduced by one, until it reaches zero.

When you program in manual mode (using the ProgramUser command) and the counter hits 0, any

attempt to program a tag will result in an error unless ProgUserDataInc is set to OFF. When you

program in AutoMode and the counter hits 0, a notification is sent (NotifyMode must be turned ON) that

the counter has reached 0 and then AutoMode gets turned OFF.

Note that AutoMode turns OFF without an explicit user command. This is similar to the behavior of the

NotifyRetryCount when sending notification will cease after the NotifyRetryCount number of

retries.

If AutoMode is turned ON without resetting the counter it will perform one AutoAction cycle and then

will turn itself OFF.

This behavior only applies to the AutoAction = ProgramUser options.

ProgUserDataIncCount Examples

Command

Response

> ProgUserDataIncCount?

ProgUserDataIncCount = -1

Command

Response

> ProgUserDataIncCount = 100

ProgUserDataIncCount = 100

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

162

ProgG2AccessPwd
F800 | 9900 | 9680 | 9650

The ProgG2AccessPwd value is used when the ProgramAccessPwd command is used without an
argument, as well as in AutoMode when an AutoAction of ProgramAndLockEPC is used (when
ProgG2LockType=Lock, the Access password is automatically written when the tag is locked).

This command is different from the similar-sounding AcqG2AccessPwd command. ProgG2AccessPwd is
a placeholder for an Access Pwd value to be written to the tag, whereas the AcqG2AccessPwd provides
the tag's current Access Pwd to be used when operating on a Class 1/Gen2 tag that is already password-
protected.

 Value supplied must be a 4-byte value.

 The default ProgG2AccessPwd is 00 00 00 00.

ProgG2AccessPwd Examples

Command

Response

>ProgG2AccessPwd = 1 2 3 4

ProgG2AccessPwd = 01 02 03 04

Command

Response

>ProgG2AccessPwd?

ProgG2AccessPwd = 01 02 03 04

ProgG2KillPwd
F800 | 9900 | 9680 | 9650

The ProgG2KillPwd value is used when the ProgramKillPwd command is used without an argument. It is
simply a shortcut placeholder for data which allows you to write the same Kill password to multiple tags
without having to enter the same password each time.

 Value supplied must be a 4-byte value.

 The default ProgG2KillPwd is 00 00 00 00.

ProgG2KillPwd Examples

Command

Response

>ProgG2KillPwd = F1 F2 F3 F4

ProgG2KillPwd = F1 F2 F3 F4

Command

Response

>ProgG2KillPwd?

ProgG2KillPwd = F1 F2 F3 F4

ProgG2LockType
F800 | 9900 | 9680 | 9650

The Class 1/Gen 2 protocol allows each of the tag's memory banks/fields to be locked with one of three
lock types. The ProgG2LockType command allows you to specify which lock type to use in the next Lock
operation.

Lock Type Description

Lock The data is locked, and may be subsequently unlocked.

PermaLock The data is locked, and may never be changed or unlocked.

PermaUnlock The data is unlocked, and may never be locked.

 The default ProgG2LockType is Lock.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

163

 Technically, there is a fourth lock type defined by the Class 1/Gen 2 protocol –
"Unlocked". Rather than "lock with the Unlocked lock type", Alien readers provide
explicit Unlock___ commands.

 The PermaLock and PermaUnlock types are, well, permanent.

 Locking the EPC or User memory banks do not prevent them from being read.
Locking the Kill password or Access password does prevent those fields from being
read.

 Locking the EPC or User memory banks does not prevent them from being changed,
unless there is a non-zero Access password stored in the tag.

 Even if there is a non-zero Access password stored in the tag, locked banks may still
be changed if the correct Access key is provided (with the AcqG2AccessPwd
command). The exception is permalocked data, which can't be changed even with
the correct Access key.

ProgG2LockType Examples

Command

Response

>ProgG2LockType?

ProgG2LockType = Lock

Command

Response

>ProgG2LockType = PermaLock

ProgG2LockType = PermaLock

ProgDataUnit
F800 | 9900 | 9680 | 9650

The usual way of writing data to a Gen2 tag is to write a word (16 bits) of data, then write the next word,
then the next, etc., perhaps verifying each word by reading it back. An alternative way to write to Gen2
tags is a "block write", where the reader hands the tag a list of words to be written sequentially into
memory. A block write is significantly faster than writing word-by-word.

The Alien reader takes care of the details required to issue both types of writes, you just have to tell it
which mode to use, using the ProgDataUnit command. All of the existing programming commands,
ProgramEPC, ProgramUser, G2Write, and even programming in AutoMode, automatically switch to the
block-write method if you specify this.

Since the BlockWrite command is an optional Gen2 feature, not all tags support it. Alien Higgs3 and
Higgs4 tags are the first Alien tags to implement this feature. If you attempt to perform a block write to
a tag that doesn't implement BlockWrite, the operation will fail. You should use BlockWrite only if
you know the tag supports it.

 Allowed Values: "Word" | "Block"

 Default Value: "Word"

ProgDataUnit Examples

Command

Response

>ProgDataUnit?

ProgDataUnit = Word

Command

Response

>ProgDataUnit = Block

ProgDataUnit = Block

ProgBlockSize
F800 | 9900 | 9680 | 9650

When programming in block mode (ProgDataUnit = block), the reader can write data to the tag more

quickly by sending more data with each transaction. The ProgBlockSize command lets you specify the

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

164

size of the block. Alien Higgs tags allow you to write up to 32 words at a time, whereas other tag
manufacturers may allow only 2 words.

Trying to write data that extends across block boundaries will result in a failure of the write operation (see
the ProgBlockAlign command, following this one).

The default value for ProgBlockSize is 0 (i.e. “default”), which corresponds to 32 words.

 Allowed Values: 0, 2, 4, 8, 16, 32

 Default Value: 0 (reader automatically picks a reasonable value, currently 32)

ProgBlockSize Examples

Command

Response

>ProgBlockSize?

ProgBlockSize = 0

Command

Response

>ProgBlockSize = 2

ProgBlockSize = 2

ProgBlockAlign
F800 | 9900 | 9680 | 9650

When programming in Block mode, you usually have to take care to not write across block boundaries
(block sizes vary from tag manufacturer to tag manufacturer), or the tag will respond with an error. The

ProgBlockAlign=On/Off command, when turned on, will tell the reader to automatically break up the

data you wish to write to the tag so that each individual piece can be block-written to the tag separately,
thus avoiding the errors associated with writing across block boundaries.

Note that for Alien Higgs tags, the block size is 32 words, which is never smaller than the size of the
largest memory bank (USER), so you will never encounter block-boundary issues, unless you use a tag
from a different manufacturer.

 Allowed Values: On | Off

 Default Value: Off

ProgBlockAlign Examples

Command

Response

>ProgBlockAlign?

ProgBlockAlign = Off

Command

Response

>ProgBlockAlign = On

ProgBlockAlign = On

ProgAttempts
F800 | 9900 | 9680 | 9650

The ProgAttempts attribute specifies the number of attempts the reader should make to program a tag
during a Program Tag operation.

 Allowed Values: Integer(1..7)

 Default Value: 3

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

165

ProgAttempts Examples

Command

Response

>ProgAttempts?

ProgAttempts = 3

Command

Response

>ProgAttempts = 5

ProgAttempts = 5

ProgSuccessFormat
F800 | 9900 | 9680 | 9650

The "Program Tag" command returns the ID that was programmed into the tag if the programming
attempt was successful. Older versions of the firmware simply returned "Success!". You can select which
behavior the reader exhibits with the ProgSuccessFormat value.

 0 = "Success!"
 1 = the programmed tag ID (default value)

ProgSuccessFormat Examples
Command

Response

>ProgSuccessFormat?

ProgSuccessFormat = 0

>Program Tag = 11 22 33 44 55 66 77 88

Program Tag = Success!

Command

Response

>ProgSuccessFormat = 1

ProgSuccessFormat = 1

>Program Tag = 11 22 33 44 55 66 77 88

Program Tag = 11 22 33 44 55 66 77 88

ProgSingulate
F800 | 9900 | 9680 | 9650

When a programming operation is attempted and there is more than one tag in the field the result is
unpredictable: the programming may succeed or may fail due to multiple tags responding at the same
time.
When the ProgSingulate option is turned ON then every time a programming operation is attempted a
short inventory is performed right before programming and if there are 2 or more tags in the field then the
"Singulation Error 149" is returned without an attempt to program.

The format is as follows:

 ProgSingulate = ON | OFF

The command is applicable to all Gen2 programming commands (including AutoMode AutoActions)
except for the G2Write and G2Erase. The default value is OFF.

 Allowed Values: "ON" | "OFF"

 Default Value: "OFF"

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

166

ProgSingulate Examples

Command

Response

>ProgSingulate?

ProgSingulate = OFF

Command

Response

// set to check-if-singulated before an attempt to program

>ProgSingulate = ON

ProgSingulate = ON

>ProgramEPC

Error 149: Singulation error

> t

Tag:E200 3411 B801 0108 6500 6464, ...

Tag:E200 3411 B801 0108 6500 6465, ...

Low-Level Programming – TagInfo, G2Read, G2Write

Class 1/Gen 2 tags contain many memory fields, and you can conveniently write to these fields using the
commands described previously – ProgramEPC, ProgramAccessPwd, ProgramKillPwd, and
ProgramUser – but you may find the need to arbitrarily write to specific portions of tag memory. The low-
level G2Write command can be used to do this.

Also, the reader only exposes the tag's EPC field (and, through a custom TagList token, the PC word) in
its TagList data. In order to query a tag for its Access or Kill passwords, User data, NSI field, etc. you
must use the low-level G2Read command.

The G2Read and G2Write commands both operate on word-boundaries in the tag memory – you cannot
read or write individual bits or bytes of data. They also require you to specify the bank and word pointers
into tag memory, so you must have an understanding of the structure of tag memory in order to use them.
The bank numbers and word pointers into each bank all begin at zero.

Recall:
 G2 bank 0 - RESERVED (Kill and Access passwords)
 G2 bank 1 - EPC (CRC + PC + EPC)
 G2 bank 2 - TID (Tag identifier)
 G2 bank 3 - USER (user-specified data, not supported by all tags)

The TagInfo reads the TID bank and some other parts of the tag, and returns to you a summary of the
lock states of the various fields, manufacturer and tag model, PC word, availability of User memory, etc.

These commands operate only on a tag that matches the current acquire mask, and they allow access
into any bank of tag memory that the tag supports. The reader performs these commands on the current
ProgAntenna.

If the memory bank you are trying to access is locked, you will need to supply the correct access
password (with AcqG2AccessPwd).

TagInfo
F800 | 9900 | 9680 | 9650

The TagInfo command gives you information about a tag, such as the manufacturer ID, tag model &
version. For Alien tags, the TagInfo is extended, to include information such as lock states of each of its
memory banks, Unique ID, PC word, etc.

The format of the command is as follows:

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

167

 TagInfo?

The reader finds a single tag and queries it for the information. It is best to confine your read zone, or
create a mask on a specific tag when performing this command. The reader reports as much information
as it can, depending on the tag type.

 Alien Higgs3 & Higgs4:
 TagInfo = M:xxxxxxxx KP:xx AP:xx EPC:xx,n USER:xx,n UPL:xxxx URL:xxxx PC:xxxx
 UID:xxxx xxxx xxxx xxxx

 Alien Higgs2:
 TagInfo = M:xxxxxxxx MAP:x KP:xx AP:xx EPC:xx,n User:xx PC:xxxx

 Other Tags:
 TagInfo = M:xxxxxxxx

 Where,
 M:xxxxxxxx is the first 2 words of the TID, indicating whether it is an EPCglobal tag, and the
tag’s manufacturer and model/version codes.
 KP:xx is the lock state of the Kill Password
 AP:xx is the lock state of the Access Password
 EPC:xx,n is the lock state and length (in words) of the EPC bank
 USER:xx,n is the lock state and length (in words) of the USER bank
 UPL:xxxx are the User Block Permalock bits
 URL:xxxx are the User Read Lock bits
 PC:xxxx is the PC word
 MAP:x is the Higgs2 memory map number
 UID:xxxx xxxx xxxx xxxx are the four unique words guaranteed in every Higgs tag

TagInfo Examples

Command

Response

// Standard Higgs3 tag (6 EPC words, 32 USER words)

>taginfo?

TagInfo = M:E2003412 KP:UL AP:UL EPC:UL,6 USER:UL,32 UPL:0000

URL:0000 PC:3000 UID:012F F200 0044 F817

Command

Response

// Reprogrammed Higgs3 tag (31 EPC words, 4 USER words)

>taginfo?

TagInfo = M:E2003412 KP:UL AP:UL EPC:UL,31 USER:UL,4 UPL:0000

URL:0000 PC:F800 UID:0133 F000 0486 6128

Command

Response

// Higgs2 tag

>taginfo?

TagInfo = M:E2003411 MAP:4 KP:UL AP:UL EPC:UL,6 PC:3000

Command

Response

// Non-Alien Higgs tag

>taginfo?

TagInfo = M:E2006004

G2Read
F800 | 9900 | 9680 | 9650

The G2Read command performs a low-level memory read on a single Class 1/Gen 2 tag. You must
specify the memory bank, word position into that bank, and the number of words to read. Some portions
of tag memory may not be available to read. For example, an Access or Kill password field that is locked
may not be read back.

The syntax of a G2Read command is:
 G2Read = <bank> <wordPtr> <wordLen>
where:

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

168

 <bank> = 0 – 3
 <wordPtr> = position of first word to read (0-2097151, base 10)
 <wordLen> = number of words to read (0-32, base 10)

The parameters you provide in the G2Read command may be separated by any combination of spaces
or commas. The data returned is an even number of space-separated hexadecimal byte values upon
success, or an error message.

The special case where <wordLen>=0 causes tags to return all of the memory in <bank> from <wordPtr>
to the end of the bank. This is called a "zero-length read", and can be helpful if you don't know how large
a particular memory bank is. If the amount of data returned is larger than 32 words, you may receive an
error. In some situations, a zero-length G2Read may return tag data that you wouldn’t normally see in a
read with a non-zero length; if the tag happens to use “sliding partitions” in its memory implementation,
then “the end of the bank” may not be clearly defined.

G2Read Examples

Command

Response

// Read the CRC and PC words (bank 1, words 0-1)

>G2Read = 1 0 2

G2Read = 42 E7 30 00 (CRC=42E7, PC=3000)

Command

Response

Command

Response

// Read the 96-bit EPC (bank 1, starting at word #2, 6 words)

>G2Read = 1 2 6

G2Read = CF F7 CC 4D 22 26 FE BF 00 00 00 00

// Compare to a "get TagList" response

>get TagList

Tag:CFF7 CC4D 2226 FEBF 0000 0000, Disc:2007/07/09 14:56:30...

Command

Response

// Read two words of user memory (tag must support this)

>G2Read = 3, 0, 2

G2Read = DE AD BE EF

Command

Response

// Read Access password (bank 0, words #2-3 - must not be locked)

>G2Read = 0, 2, 2

G2Read = 01 02 03 04

Command

Response

// Try to read a memory location that doesn't exist

// (tag not supporting User memory)

>G2Read = 3 0 2

Error 259: (Tag Error) Memory overrun or unsupported PC value.

Command

Response

// Read all of the TID bank (zero-length read!)

>G2Read = 2, 0, 0

G2Read = E2 00 34 12 01 61 00 00 00 00 00 00 03 1D 01 60 70…

G2Write
F800 | 9900 | 9680 | 9650

The G2Write command performs a low-level memory write to a single Class 1/Gen 2 tag. You must
specify the memory bank, word position into that bank, and the data to write (an even number of bytes).
Some portions of tag memory may not be available to write. For example, the CRC for a tag's EPC, or a
locked field (usually) may not be written to. The syntax of a G2Write command is as follows:

 G2Write = <bank> <wordPtr> <data>…

where: <bank> = 0-3

 <wordPtr> = position of first word to write (0-2097151, base 10)

 <data>… = an even number of bytes to write (1-32, base 10)

The parameters you provide in the G2Write command may be separated by any combination of spaces or
commas. The reader responses with "Success!", or an error message.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

169

G2Write Examples

Command

Response

Command

Response

// Write the EPC "the hard way" (bank 1, beginning at word #2)

// This is not a good way to write the EPC!

>G2Write = 1, 2, 11 22 33 44 55 66 77 88 99 10 11 12

G2Write = Success!

// Double-check with an inventory

>get TagList

Tag:1122 3344 5566 7788 9910 1112, Disc:2006/10/19 14:56:30...

Command

Response

Command

Response

// Write to User memory (bank 3 – must be supported by the tag)

>G2Write = 3, 0, DE AD BE EF CA FE

G2Write = Success!

// Read that User memory back (3 words)

>G2Read = 3, 0, 3

G2Read = DE AD BE EF CA FE

Command

Response

// Try to write to a memory location that doesn't exist

// (tag not supporting User memory)

>G2Write = 3, 0, DE AD BE EF CA FE

Error 259: (Tag Error) Memory overrun or unsupported PC value.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

170

Programming an Entire Tag Image (Alien Higgs Tags Only)

The following commands expose custom Class 1/Gen 2 tag commands that are present only in the Alien
Higgs2 and Higgs3 tags. Programming an Alien tag image writes all of the tag's memory (including
passwords, EPC, User data, etc.) in one command. Programming an entire tag image is significantly
faster than writing tag memory banks separately. In the current reader implementation, all of the
fields/banks in the resulting tag are left unlocked.

The reader performs the ProgramAlienImage operation on the current ProgAntenna, and the tag must
match the current acquire mask. Also, for Alien Higgs2 tags, the tag must still be in the factory-default
"Higgs2_96" memory map, with no fields or banks locked. Alien Higgs3 tags do not have this restriction,
and they also present a simplified memory map scheme.

ProgramAlienImage
F800 | 9900 | 9680 | 9650

The ProgramAlienImage command writes the entire tag's memory map. No arguments are needed – the
reader automatically constructs the appropriate sequence of image bytes to be sent to the reader by
taking values from the ProgEPCData, ProgUserData, ProgG2AccessPwd, ProgG2KillPwd commands,
along with information in the ProgAlienImageMap and ProgAlienImageNSI commands described later.
Note that some of the data fields may be irrelevant, depending on the memory map selected.

The ProgEPCData and ProgUserData values may be automatically incremented following the
ProgramAlienImage command, depending on the result of the operation and the setting of the
ProgEPCDataInc and ProgUserDataInc properties. ProgUserData is only incremented if User data was
written to the tag.

 The successful response to the ProgramAlienImage command is the complete image
byte sequence sent to the tag.

 Alien Higgs2 tags only allow the ProgramAlienImage functionality if they are still in
the factory default Higgs2_96 memory map, with no fields locked. You may change to
one of the other mappings ONCE, or continue to rewrite the Higgs2_96 mapping.

 Alien Higgs3 tags may be reimaged as often as required.

 Alien Higgs4 tags do not support the ProgramAlienImage feature.

 If any fields in the tag are locked, they must be unlocked before writing an image
map. In the current implementation, the tag remains completely unlocked after
ProgramAlienImage. In the future, you may be able to specify desired lock states of
various banks and memory blocks and have the ProgramAlienImage configure that
as well.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

171

ProgramAlienImage Example

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Preset the data to write (only needs to be done initially)

Alien>ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

Alien>ProgG2KillPwd = AA AA AA AA

ProgG2KillPwd = AA AA AA AA

Alien>ProgG2AccessPwd = BB BB BB BB

ProgG2AccessPwd = BB BB BB BB

// See following section for other ProgAlienImageMap examples

Alien>ProgAlienImageMap = Higgs2_96

ProgAlienImageMap = Higgs2_96

// See following sections regarding ProgAlienImageNSI

Alien>ProgAlienImageNSI = 00 00

ProgAlienImageNSI = 00 00

// Program the entire tag image

Alien>ProgramAlienImage

AAAA AAAA BBBB BBBB 1111 2222 3333 4444 5555 6666 3000 03B8

Command

Response

Command

Response

Command

Response

// Verify the EPC

Alien>t

Tag:1111 2222 3333 4444 5555 6666, Disc:2007/07/06 13:05:34…

// Verify the Kill and Access passwords

Alien>G2Read = 0 0 4

G2Read = AA AA AA AA BB BB BB BB

// Check that the ProgEPCData field automatically incremented

Alien>ProgEPCData?

ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 67

ProgAlienImageMap
F800 | 9900 | 9680 | 9650

Alien Class 1/Gen 2 tags may contain chips in a few varieties, Higgs2, Higgs3, and Higgs4. Only Higgs2
& Higgs3 support the ProgramAlienImage feature and its related properties.

HIGGS2
Alien Higgs2 tags can be configured with one of three memory maps. While the total amount of memory
in the tag is constant, each memory map provides different combinations of EPC length and User
memory options, at the expense of one or both of the Kill and Access passwords. The reader
automatically constructs an image map specified by the ProgAlienImageMap property, and the relevant
ProgEPCData, ProgUserData, etc. presets.

Higgs2 tags can be identified by finding 0x3411 in the 2

nd
 word of the TID bank (bank 2):

Alien>G2Read = 2 1 1

G2Read = 34 11

Allowed values for ProgAlienImageMap when working with Higgs2 tags are:

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

172

ProgAlienImageMap

(Higgs2)

EPC

(bits)

USER

(bits)

Access

Pwd

Kill

Pwd

Higgs2_96 96 0 ✔ ✔

Higgs2_128 128 0 ✔

Higgs2_96U64 96 64

 Alien Higgs2 tags only allow the ProgramAlienImage functionality if they are still in

the factory default Higgs2_96 memory map, with no fields locked. You may change to
one of the other mappings ONCE, or continue to rewrite the Higgs2_96 mapping. If
any fields are locked, they must be unlocked before writing an image map.

 Previous firmware versions exposed these memory mappings as "EPC96",
"EPC128", and "EPC96USER64". The reader still accepts those older memory map
names, for backward compatibility.

HIGGS3
Alien Higgs3 tags have a much more flexible memory architecture. The Access and Kill passwords are
always present, and there is always at least 96 bits of EPC memory and 64 bits of User memory. The
partition between the EPC data and User data is not fixed, though, so you have some flexibility in how tag
memory is divided between the two banks.

Higgs3 tags can be identified by finding 0x3412 in the 2

nd
 word of the TID bank (bank 2):

Alien>G2Read = 2 1 1

G2Read = 34 12

Alien Higgs3 tags don't have fixed memory mappings like Alien Higgs2 tags do, so you change the
partitioning of EPC+User memory by simply writing different amounts of data in each bank. To do a
complete loading of Higgs3 tag memory, you select the "Higgs3" mapping in the ProgAlienImageMap
command.

There is an alternative way to load Higgs3 memory which is significantly faster than the standard image
load (which is, itself, significantly faster than writing each bank separately). This mechanism is known as
"fast load" and writes Access & Kill passwords, and a 96-bit EPC only. Other EPC memory and all of the
User memory is erased. You select this mode by choosing the "Higgs3_96" mapping in the
ProgAlienImageMap command.

ProgAlienImageMap

(Higgs3)

EPC

(bits)

USER

(bits)

Access

Pwd

Kill

Pwd

Higgs3 96-496 512-64 ✔ ✔

Higgs3_96 96 - ✔ ✔

The total amount of memory allotted to the EPC+User banks cannot exceed 608 bits, and there are some
word/block boundary conditions that have to be met as well. The allowed partitions are outlined below:

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

173

EPC Size

(bits)

USER Max

(bits)

0-96 512

112-160 448

176-224 384

240-288 320

304-352 256

368-416 192

432-480 128

496 64

ProgAlienImageMap Example – Higgs2 128-bit EPC

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Program a new Higgs2 tag with a 128-bit EPC

>ProgAlienImageMap = Higgs2_128

ProgAlienImageMap = Higgs2_128

>ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66 77 77 88 88

ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66 77 77 88 88

>ProgG2KillPwd = AA AA AA AA

ProgG2KillPwd = AA AA AA AA

// Program the tag

>ProgramAlienImage

AAAA AAAA 1111 2222 3333 4444 5555 6666 7777 8888 4000 81B8

// Verify the new 128-bit EPC

>t

Tag:1111 2222 3333 4444 5555 6666 7777 8888, Disc:2007/07/06…

// Verify the Kill password

>G2Read = 0 0 2

G2Read = AA AA AA AA

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

174

ProgAlienImageMap Example – Higgs2 w/User Data

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Program a new Higgs2 tag with User memory

>ProgAlienImageMap = Higgs2_96U64

ProgAlienImageMap = Higgs2_96U64

>ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

>ProgUserData = AA AA BB BB CC CC DD DD

ProgUserData = AA AA BB BB CC CC DD DD

// Program the tag

>ProgramAlienImage

AAAA BBBB CCCC DDDD 1111 2222 3333 4444 5555 6666 3000 41B8

// Verify the new EPC

>t

Tag:1111 2222 3333 4444 5555 6666, Disc:2007/07/06 14:14:24…

// Verify the User data

>G2Read = 3 0 4

G2Read = AA AA BB BB CC CC DD DD

ProgAlienImageMap Example – Higgs3 Full Load

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// Program a Higgs3 tag with a 496-bit EPC and 64-bits of User

>ProgAlienImageMap = Higgs3

ProgAlienImageMap = Higgs3

>ProgEPCData = 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 31 32

33 34 35 36 37 38 41 42 43 44 45 46 47 48 51 52 53 54 55 56 57 58 61

62 63 64 65 66 67 68 71 72 73 74 75 76 77 78 81 82 83 84 85 86

ProgEPCData = 11 12 13 14 15 16 17 18 21 22…

>ProgUserData = A1 A2 A3 A4 A5 A6 A7 A8

ProgUserData = A1 A2 A3 A4 A5 A6 A7 A8

>ProgG2KillPwd = AA AA AA AA

ProgG2KillPwd = AA AA AA AA

>ProgG2AccessPwd = BB BB BB BB

ProgG2AccessPwd = BB BB BB BB

// Program the tag

>ProgramAlienImage

ProgramAlienImage = BBBB BBBB AAAA AAAA F800 1112 1314…

// Verify the new 496-bit EPC

>t

Tag:1112 1314 1516 1718 2122 2324 2526 2728 3132 3334 3536 3738

4142 4344 4546 4748 5152 5354 5556 5758 6162 6364 6566 6768 7172

7374 7576 7778 8182 8384 8586, Disc:2008/08/12 13:43:16,

Last:2008/08/12 13:43:16, Count:1, Ant:0, Proto:2

// Verify the Kill & Access passwords

>G2Read = 0 0 0

G2Read = AA AA AA AA BB BB BB BB

// Verify User memory

>G2Read = 3 0 0

G2Read = A1 A2 A3 A4 A5 A6 A7 A8

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

175

ProgAlienImageNSI
F800 | 9900 | 9680 | 9650

The PC (Protocol Control) word of all Class 1/Gen 2 tags resides in bank #1 at word #1, just before the
EPC data. The upper five bits of the PC word (bits 0-4, 0 being most significant) specify the length of the
EPC data, and are automatically written by the reader when the EPC is programmed. The next two bits
(bits 5,6) are designated Reserved for Future Use (RFU) by the EPC Class 1/Gen 2 protocol and should
always be 0. The last nine bits (bits 7-15) of the PC word contain the Numbering System Identifier (NSI).

The first bit of the NSI (bit #7 of the PC word) is a toggle bit, indicating whether the EPC value is encoded
using an EPCglobal™ numbering system (if bit #7 is a zero), or an ISO/IEC 15961 encoding (if bit #7 is a
one). In the case of an EPCglobal encoding, the remainder of the NSI is reserved and should be all zeros.
In the case of an ISO/IEC 15961 encoding, the remaining bits provide Application Family Identifier (AFI)
information. The default value for the NSI is all zeros (indicating an EPCglobal encoding).

If you need to encode tags with a particular NSI value, you can provide this information with the
ProgAlienImageNSI property. The reader automatically uses this value when constructing an Alien tag
image map for you during execution of the ProgramAlienImage command. If you use the
ProgramAlienImage command by manually providing the 24 image map bytes, you need to insert the
desired NSI value into the image map data yourself, as part of the PC word.

The ProgAlienImageNSI is specified as one word (two bytes), although only the least significant 9 bits are
actually used (the lower bit of the first byte, and all 8 bits of the second byte).

ProgAlienImageNSI Example

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

Command

Response

// First, look at existing NSI (bank #1, word #1, ignore 1st nibble)

Alien>G2Read = 1 1 1

G2Read = 30 00

// NSI is all zeros EPCglobal encoding

Alien>ProgAlienImageMap = Higgs2_96

ProgAlienImageMap = Higgs_95

// Program an NSI that is all ones

Alien>ProgAlienImageNSI = 01 FF

ProgAlienImageNSI = 01 FF

Alien>ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

ProgEPCData = 11 11 22 22 33 33 44 44 55 55 66 66

// Program the tag

Alien>ProgramAlienImage

0000 0000 0000 0000 1111 2222 3333 4444 5555 6666 31FF 03B8

// Verify the new custom NSI

Alien>G2Read = 1 1 1

G2Read = 31 FF

// NSI is all ones

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

176

Programming Tags in AutoMode

Programming functions are fully supported by the reader's autonomous mode of operation. Using
AutoMode, the user can assign the reader the task of programming, erasing, and locking tags. This is
done by setting the AutoAction attribute to the appropriate action, as described below.

Some of the AutoMode functions, such as "ProgramEPC" and "ProgramAndLockEPC", require some
additional values to be specified first, as described below.

AutoAction = ProgramEPC (was “Program”)
F800 | 9900 | 9680 | 9650

When running in AutoMode with an AutoAction of ProgramEPC, the reader can automatically program a
tag with a new EPC in AutoMode, and this action can be repeated indefinitely, each time incrementing the
EPC to use for programming, so that groups of tags that were programmed while in AutoMode end up
with sequential tag IDs.

To instruct AutoMode to program EPCs, issue the command:

AutoAction = ProgramEPC

Instead of "ProgramEPC", older readers used "Program", which is still accepted for backward
compatibility.

Instead of reading tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for details),
the reader programs the tag in the field with the EPC, specified by the ProgEPCData value (see above).

A successful programming event causes the evaluation stage of AutoMode to evaluate to true. A failed

programming event evaluates to false.

The reader may optionally increment the next EPC to program, depending on the ProgEPCDataInc
setting.

AutoAction = ProgramAndLockEPC
F800 | 9900 | 9680 | 9650

When running AutoMode with an AutoAction of ProgramAndLockEPC, the reader can automatically
program a tag with a new EPC and then lock it with a password. This event can be repeated indefinitely,
each time incrementing the EPC by one.

To instruct AutoMode to program and lock EPCs, issue the following command

AutoAction = ProgramAndLockEPC

Instead of "ProgramAndLockEPC", older readers used "Program and Lock", which is still accepted for
backward compatibility.

Instead of reading tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for details),
the reader programs a tag with an EPC, as specified by the ProgEPCData value), and then locks it. For
Class 1/Gen 2 tags, the ProgG2AccessPwd is written to the tag only if ProgG2LockType=Lock. For the
PermaLock and PermaUnlock lock types, the ProgG2AccessPwd is not written (since the permanent
nature of the lock doesn't require an Access password).

A successful ProgramAndLockEPC event causes the evaluation state of AutoMode to evaluate to true.

A failed ProgramAndLockEPC event evaluates to false.

The reader may optionally increment the next EPC to program, depending on the ProgEPCDataInc
setting.

CHAPTER 5 TAG PROGRAMMING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

177

AutoAction = ProgramUser
F800 | 9900 | 9680 | 9650

When running in AutoMode with an AutoAction of ProgramUser, the reader can automatically program a
tag with a new User data in AutoMode, and this action can be repeated indefinitely, each time
incrementing the User data to use for programming, so that groups of tags that were programmed while in
AutoMode end up with sequential User data.

To instruct AutoMode to program User data, issue the command:

AutoAction = ProgramUser

Instead of reading tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for details),
the reader programs the tag in the field with the User data specified by ProgUserData value (see above).

A successful programming event causes the evaluation stage of AutoMode to evaluate to true. A failed

programming event evaluates to false.

The reader may optionally increment the next User data to program, depending on the ProgUserDataInc
setting.

AutoAction = ProgramAndLockUser
F800 | 9900 | 9680 | 9650

When running AutoMode with an AutoAction of ProgramAndLockUser, the reader can automatically
program a Class1/Gen2 tag with new User data and then lock it with a password. This event can be
repeated indefinitely, each time incrementing the User data by one.

To instruct AutoMode to program and lock User data, issue the following command

AutoAction = ProgramAndLockUser

Instead of reading tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for details),
the reader programs a tag with new User data specified by ProgUserData, and then locks it. The
ProgG2AccessPwd is written to the tag only if ProgG2LockType=Lock. For the PermaLock and
PermaUnlock lock types, the ProgG2AccessPwd is not written (since the permanent nature of the lock
doesn't require an Access password).

A successful ProgramAndLockUser event causes the evaluation state of AutoMode to evaluate to true.

A failed ProgramAndLockUser event evaluates to false.

The reader may optionally increment the next User data to program, depending on the ProgUserDataInc
setting.

AutoAction = ProgramAlienImage
F800 | 9900 | 9680 | 9650

When running in AutoMode with an AutoAction of ProgramAlienImage, the reader can automatically
program an Alien Class 1/Gen 2 tag with a completely new image in AutoMode, and this action can be
repeated indefinitely, each time incrementing the EPC (and User data, if relevant) to use for
programming, so that groups of tags that were programmed while in AutoMode end up with sequential tag
IDs.

To instruct AutoMode to program Alien G2 tags with new images, issue the command:

AutoAction = ProgramAlienImage

Instead of reading tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for details),
the reader programs the tag in the field with a completely new memory image, as specified by the
ProgAlienImageMap, ProgEPCData, ProgG2KillPwd, ProgG2AccessPwd, ProgUserData, and
ProgAlienImageNSI values. Only those properties that are relevant to the selected ProgAlienImageMap
are used.

TAG PROGRAMMING CHAPTER 5

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

178

A successful programming event causes the evaluation stage of AutoMode to evaluate to true. A failed

programming event evaluates to false.

The reader may optionally increment the next EPC to program, depending on the ProgEPCDataInc
setting. If the selected ProgAlienImageMap includes User data, then the reader may also increment the
ProgUserData value, depending on the ProgUserDataInc setting.

AutoAction = Erase
F800 | 9900 | 9680 | 9650

When running AutoMode with an AutoAction of Erase, the reader can automatically erase a tag in the
field, and this action can be repeated indefinitely.

To instruct AutoMode to erase tags, issue the following command:

AutoAction = Erase

Instead of acquiring tags during its "work" stage (refer to AutoMode state diagram in Chapter 2 for
details), the reader erases tags in the field.

A successful erase event in causes the evaluation stage of AutoMode to evaluate to true. A failed erase

event evaluates to false.

Command

Response

>NotifyNow

Issuing Notify Trigger...

CHAPTER 6 LLRP

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

179

CHAPTER 6

LLRP

LLRP (Low Level Reader Protocol) is a specification for a standard network interface between RFID
readers and controlling software or hardware. LLRP was created and ratified by EPCglobal in April, 2007,
and is now at version 1.1. The goal of LLRP is to simplify application development for end-users,
eliminating the need to conform to different proprietary communication protocols provided by each RFID
vendor. There would no longer be a need to use different software “adapters”, which would theoretically
reduce the time needed to develop individual RFID solutions, and eliminate the risk associated with
committing to one or two specific RFID vendors.

LLRP is supported on ALR-F800 and ALR-9900/+ readers only. It will not run on ALR-9680, or ALR-9650
readers at this time.

LLRP and ARP Coexistence

There are two end-points in the LLRP protocol – clients and readers. The client initiates a connection to a
reader, and passes “specs” to it, detailing how the reader should be configured, air-protocol-specific
properties, which antennas to use and when, and how the RFID data should be reported back to the
client. LLRP also allows for “custom” specs, developed by individual reader vendors, to allow for
proprietary operations on their particular reader models. This unfortunately negates the “write once, run
anywhere” promise of a unifying standard.

While the LLRP service is running, the reader will listen on the LLRP TCP port (5084) for incoming LLRP
connections, but will also continue to listen for Alien Reader Protocol (ARP) connections on its other
communication channels – port 23, port 2300 (internal), and the serial interface. While LLRP is running,
the reader will accept Alien commands sent over the ARP channels, but the Alien commands related
directly to the radio subsystem will be blocked to prevent conflicts with the LLRP service. The Alien
firmware is flexible enough to support both ARP and LLRP interfaces at the same time, so that you can
still control the reader over ARP to, for example, start & stop services, change network settings, upgrade
firmware, etc.

After stopping the LLRP service, we recommend you reboot the reader or perform a FactorySettings
command.

Controlling the LLRP Service

You start, stop, enable, and disable the LLRP service on the reader using the Alien Reader Protocol’s
“service” command. The reader will only accept one LLRP connection at a time, but if a subsequent
connection attempt is made, the reader will test the existing connection to see if it is still valid and if it is, it
will reject the new connection. If the current connection is stale, it will disconnect the old connection and
accept the new one.

LLRP CHAPTER 6

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

180

Example:
// Check the status (stopped, autostart disabled, startup priority 15)

Alien>service llrp status

s d 15 llrp

// Start the LLRP service

Alien>service llrp start

R d 15 llrp

// While LLRP is running, can’t read tags and do some other functions here

Alien>t

(No Tags)

Alien>BlinkLED = 0 255 100 5

Error 516: (Driver error) Some ARP commands are not available while LLRP is active.

// Force LLRP to disconnect any connected client

Alien>service llrp close

service llrp RUNNING

// Stop the LLRP service, fully reenabling ARP control of the reader

Alien>service llrp stop

s d 15 llrp

// Cause LLRP to automatically start when the reader boots

Alien>service llrp enable

s A 15 llrp

// Prevent LLRP from automatically starting when the reader boots

Alien>service llrp disable

s d 15 llrp

LLRP References

 EPCglobal: LLRP Specification, v1.0.1
 This is the first release of LLRP.
 http://www.epcglobalinc.org/standards/llrp/llrp_1_0_1-standard-20070813.pdf

 EPCglobal: LLRP Specification, v1.1.0
 This is the newer release of LLRP, and supported by Alien LLRP.
 http://www.epcglobalinc.org/standards/llrp/llrp_1_1-standard-20101013.pdf

 EPCglobal: UHF Class 1, Gen 2 (C1G2) Standard
 This is the C1G2 standard. You should be familiar with this before attempting LLRP.
 http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf

 LLRP Toolkit (LTK) Software Development Kit
 LLRP Toolkit is a set of free SDKs in C, C++, .Net, Java, and Perl.
 http://www.llrp.org/

LLRP Version 1.0.1 vs. Version 1.1.0
Most current LLRP implementations in use today implement the earlier v1.0 protocol. Alien firmware
supports the newer LLRP v1.1 protocol.

LLRP v1.1 adds some new optional features, but most of the other changes involve additional parameters
within certain specs, and expanded values for many enumerations of field values. For backward
compatibility reasons, the reader answers all new connections in v1.0 mode. Once the client changes the
protocol version to v1.1, then reader will operate under the v1.1 protocol for the duration of the
connection. The protocol version can only be set once per connection.

CHAPTER 6 LLRP

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

181

VERSION NEGOTIATION
LLRP v1.1 introduces four new messages:

1. GET_SUPPORTED_VERSION

2. GET_SUPPORTED_VERSION_RESPONSE: Returns the currently-set protocol version,

and the maximum version that the reader supports.

3. SET_PROTOCOL_VERSION: Includes the desired LLRP protocol version to be used from

then on (may only be issued once per connection).

4. SET_PROTOCOL_VERSION_RESPONSE

NEW C1G2 FEATURES
Some new C1G2 v1.2.0 features are supported in LLRP v1.1, including BlockPermalock and tag
recommissioning. Support for them is indicated in the C1G2LLRPCapabilities parameter, within a
GET_READER_CAPABILITIES_RESPONSE message.

NEW COMMUNICATION STANDARDS
A new set of regional communication standards are now enumerated in the protocol.

ENHANCED REPORT TRIGGERS
There are two time-based report triggers that are new to v1.1.

5. Upon N seconds or end of AISpec

6. Upon N seconds or end of of ROSpec

LOOPSPECS
LLRP v1.1 defines a mechanism to loop execution of the Antenna Inventories within an ROSpec.

Alien LLRP Capabilities and Optional Features

Many aspects of the LLRP protocol are left up to the vendor to define or specify. The following table
details the capabilities and optional features that the Alien LLRP implementation supports.

LLRP Feature or Capability ALR-F800/9900/+

General Device Capabilities
MaxNumberOfAntennaSupported 4

CanSetAntennaProperties -

HasUTCClockCapability Y

ReceiveSensitivityTableEntries 1

GPIOCapabilities 4 In, 8 Out

PerAntennaAirProtocols Class1Gen2

LLRP Capabilities
CanDoRFSurvey -

CanReportBufferFillWarning Y

SupportsClientRequestOpSpec -

CanDoTagInventoryStateAwareSingulation Y

SupportsEventAndReportHolding Y

MaxPriorityLevelSupported 7

ClientRequestOpSpecTimeout -

MaxNumROSpecs 64

MaxNumSpecsPerROSpec 16

MaxNumInventoryParameterSpecsPerAISpec 1

MaxNumAccessSpecs 256

MaxNumOpSpecsPerAccessSpec 8

Regulatory Capabilities

LLRP CHAPTER 6

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

182

Transmit Power Levels 151

Min Transmit Power 16.6

Max Transmit Power 31.6

RF Modes 5

C1G2 LLRP Capabilities
CanSupportBlockErase Y

CanSupportBlockWrite Y

MaxNumSelectFiltersPerQuery 8

Custom Capabilities
Separate Transmit Power when Writing Y

Higgs Dynamic Authentication Y

Hide User Blocks Y

Alien LLRP RF Modes
The RF modes offered in the LLRP interface reflect the same RF Modes seen in the ARP interface. The
following table lists these modes and their details.

Alien RF Modes
25M4
(DRM)

25FM0
(STD)

06FM0
(HS) 12M4 06M4

Mode Table Index (US-FCC) 0 1 2 3 4

Mode Identifier 108 105 107 109 110

DR Value DRV_64_3 DRV_64_3 DRV_8 DRV_64_3 DRV_8

EPC HAG TC Conformance 0 0 0 0 0

M Value MV_4 MV_FM0 MV_FM0 MV_4 MV_4

Forward Link Modulation PR_ASK PR_ASK PR_ASK PR_ASK PR_ASK

Spectral Mask Indicator DI DI MI MI MI

BDR Value 250000 250000 250000 250000 250000

PIE Value 1750 1750 1750 1750 1750

Min Tari Value 25000 25000 6250 12500 6250

Max Tari Value 25000 25000 6250 12500 6250

Step Tari Value 0 0 0 0 0

When setting the RF mode on an antenna, the LLRP specification is somewhat vague as to whether you
give the zero-based Mode Table Index or the vendor-defined Mode Identifier, and vendor
implementations differ in this regard. Alien accommodates this dual interpretation. You can either set a
mode using its Mode Table Index, or the Mode Identifier.

For example, to set DRM mode, you can either use “1” (Mode Table Index) or “108” (Mode Identifier).
The values of the Alien Mode Identifiers are specified in the table above.

NOTE: The entries in the RF Modes Table depend on the reader locality, so the same Mode Table Index
value may represent different modes for different localities. The best way to determine the available
modes and the Index range is to fetch the entire RF Mode table by reading the reader capabilities.
The values of the Mode Table Index in the table above correspond to a US-FCC configured reader.

CHAPTER 6 LLRP

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

183

Alien LLRP Extensions

LLRP provides numerous “custom extension points” throughout the protocol, where vendors are allowed
to insert customized parameters in the messages going to and from the reader, to provide functionality
not specified in LLRP, and showcase unique features of their readers and tags. To some degree, this
defeats the primary purpose of having a standardized protocol, so Alien has elected to focus on
implementing the core protocol to its fullest (many ROSpecs & priorities, TagStateAware inventories, full
support for masking, filters, and looping AISpecs), rather than inundating RFID users with new vendor-
specific (and reader-specific!) options in the protocol.

That being said, there are some features and options that Alien felt were valuable enough to warrant
deviating from the core standard. The Alien LLRP service supports the following three features, through
LLRP extension parameters:

Alien Feature Description
Dynamic Authentication Performs additional verification steps to ensure the

authenticity of Higgs3 & Higgs4 tags. Reports authentic-
cation results and tag manufacturer information for all tags.

Write Power Control Allows you to specify a different transmit power to use
when performing write operations with the tag.

User Memory Read Locks Allows you to hide individual blocks of User memory in
Higgs3 & Higgs4 tags from being read.

Alien’s unique manufacturer ID is 17996. This value and each custom parameters “type” value are
required when constructing and inserting custom parameters into your LLRP messages.

Dynamic Authentication
Alien Higgs3 & Higgs4 tags have a feature that allows them to be validated for authenticity by the reader.
The reader performs any additional authentication checks (on Higgs3/4 tags), and also reports back the
manufacturer and tag model of every tag. You can make use of this feature in Alien LLRP by requesting

the information via a custom parameter in the ROReportSpec, while you are configuring the rest of your

TagReportContentSelector. The extra information will appear as a custom parameter in the

TagReportData generated by the reader.

ALIENTAGREPORTCONTENTSELECTOR PARAMETER

The AlienTagReportContentSelector allows you to specify which Alien-only data fields to include

in your TagReportData. Think of this as an extension of the TagReportContentSelector of the

ROReportSpec where it is attached. The enableDynamicAuthentication field controls the dynamic

authentication feature, and whether the tag manufacturer info will be included in the TagReportData.

The AlienTagReportContentSelector attaches to an ROReportSpec’s custom extension point.

AlienTagReportContentSelector (paramType #218)

EnableAlienDynamicAuthentication: Boolean

ALIENTAGREPORTDYNAMICAUTHENTICATION PARAMETER
When the reader collects tag authentication or manufacturer information, it attaches it to the

TagReportData parameter as a custom parameter, alongside all of the other data for that tag.

LLRP CHAPTER 6

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

184

AlienTagReportDynamicAuthentication (paramType #219)

TID: Unsigned Integer (4 bytes) – the first two words of the tag’s TID; indicates
whether it is an EPCglobal tag, and the tag’s manufacturer and model number.

AuthenticateResult: Unsigned Char (1 byte)
Possible Values:
 Value Definition

 ----- ----------

0 Authentication Succeeded

1 Authentication Failed (possible fake!)

2 Alien Tag, but authentication not supported

3 Non-Alien Tag

4 Authentication Operation Failed (e.g. tag lost)

Write Power Control
Being able to use a different transmit power when writing to a tag, compared to reading tags, can be
useful for confining the region of a tag-programming station. You could use a low transmit power when
singulating a tag, to keep the read zone small, then switch to higher power when writing to the tag, to
ensure write success.

ALIENWRITEPOWERCONTROL PARAMETER

The reader will automatically switch over to the power level given by the AlienWritePowerControl

parameter when it is performing any type of write, lock, or kill operation on the tag. The value you specify
is an index into the reader’s transmit power level table, just like TransmitPower field in the

RFTransmitter parameter.

The AlienWritePowerControl parameter attaches to the C1G2AirProtocolInventoryCommand’s

custom extension point.

AlienWritePowerControl (paramType #100)

WriteTransmitPower: Unsigned Short Integer (2 bytes) – index into the Transmit
Power Table.

User Read Locks
Align Higgs3 & Higgs4 tags allow you to hide individual blocks of User memory from others, unless they
supply the correct access password. These “read locks” allow you to store sensitive data in the tag, which
only you and trusted partners can read or modify. Higgs3 and Higgs4 tags subdivide their User memory
into different sized blocks, for read lock purposes. Higgs3 uses blocks that are four words (64 bits total) in
length, and Higgs4 uses blocks that are 2 words (32 bits) in length. When you set read locks on the User
bank, you set all of the lock states for all of the blocks at the same time; there is no way to only change
one block’s status without also re-asserting the other statuses of the other blocks.

ALIENHIDEBLOCKS PARAMETER

The AlienHideBlocks parameter acts just like other C1G2OpSpecs in the protocol, and it is attached to

a specific AccessSpec. When a tag that matches the AccessSpec’s C1G2TagSpec parameter, then all

of the OpSpecs defined in that AccessSpec are run, including the AlienHideBlocks parameter. The

AlienHideBlocks parameter contains an OpSpecID field, so that you can identify the results of it’s

action in the generated TagReportData. It also contains a field for the memory bank to act on (only

bank 3 is supported), the necessary Access Password, and the bytes containing the lock states.

CHAPTER 6 LLRP

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

185

Each of the blocks in the User memory of Higgs3/4 tags are numbered sequentially, and have a
corresponding bit in the ReadLockMask that you use to set the lock states. The first block corresponds to
the first (highest order) bit in the mask, followed by the second block in the next-higher bit, etc. Since the
ReadLockMask is 8 bits long, if you wanted to hide only the first block of User memory, you would use a
value of 0x80 (binary: 10000000), not 0x01 (binary: 00000001).

The AlienHideBlocks custom parameter attaches to either the AccessCommand’s custom extension

point (LLRP v1.0 or 1.1), or directly onto the AccessCommand’s list of OpSpecs (LLRP v1.1 only).

AlienHideBlocks (paramType #300)

OpSpecId: Unsigned Short Integer (2 bytes)

Bank: Unsigned Char (1 byte) – currently, only bank 3 is supported.

AccessPassword: Unsigned Integer (4 bytes)

ReadLockMask: Unsigned Char (1 byte)

ALIENHIDEBLOCKSRESULT PARAMETER

When an AccessSpec is run containing an AlienHideBlocks parameter, the results of the read-lock

operation will be in a custom parameter in that tag’s TagReportData, along with the other data gleaned

from the tag during the inventory, and the other OpSpecResults that may have been collected as well.

The AlienHideBlocksResult parameter attaches to the TagReportData’s custom extension point.

AlienHideBlocksResult (paramType #301)

OpSpecId: Unsigned Short Integer (2 bytes)

Result: Unsigned Char (1 byte)
Possible Values:
 Value Definition

 ----- ----------

 0 Succeeded.

 1 Insufficient power at the tag.

 2 Non-specific tag error.

 3 No response from tag.

 4 Non-specific reader error.

 5 Incorrect password.

 6 Tag memory overrun.

 7 Tag memory locked.

DTDS FOR XML DATA STRUCTURES APPENDIX B

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

186

APPENDIX A

DTDs for XML Data Structures

The reader has the capability to generate three different types of XML-formatted documents. This
appendix gives a Document Type Definition (DTD) for each of these XML documents.

Heartbeat DTD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Alien-RFID-Reader-Heartbeat [

 <!ELEMENT Alien-RFID-Reader-Heartbeat (ReaderName, ReaderType,

 IPAddress, CommandPort, HeartbeatTime, MACAddress?, ReaderVersion?)>

 <!ELEMENT ReaderName (#PCDATA)>

 <!ELEMENT ReaderType (#PCDATA)>

 <!ELEMENT IPAddress (#PCDATA)>

 <!ELEMENT CommandPort (#PCDATA)>

 <!ELEMENT HeartbeatTime (#PCDATA)>

 <!ELEMENT MACAddress (#PCDATA)>

 <!ELEMENT ReaderVersion (#PCDATA)>

]>

TagList DTD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Alien-RFID-Tag_List [

 <!ELEMENT Alien-RFID-Tag_List (Alien-RFID-Tag*)>

 <!ELEMENT Alien-RFID-Tag (TagID, DiscoveryTime, LastSeenTime,

 Antenna, ReadCount, Protocol?, D1?, D2?, D3?, D4?)>

 <!ELEMENT TagID (#PCDATA)>

 <!ELEMENT DiscoveryTime (#PCDATA)>

 <!ELEMENT LastSeenTime (#PCDATA)>

 <!ELEMENT Antenna (#PCDATA)>

 <!ELEMENT ReadCount (#PCDATA)>

 <!ELEMENT Protocol (#PCDATA)>

 <!ELEMENT D1 (#PCDATA)>

 <!ELEMENT D2 (#PCDATA)>

 <!ELEMENT D3 (#PCDATA)>

 <!ELEMENT D4 (#PCDATA)>

]>

Notification DTD

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Alien-RFID-Reader-Auto-Notification [

 <!ELEMENT Alien-RFID-Reader-Auto-Notification (ReaderName, ReaderType,

 IPAddress, CommandPort, Time, Reason, StartTriggerLines?,

 StopTriggerLines?, Alien-RFID-Tag-List)>

 <!ELEMENT ReaderName (#PCDATA)>

 <!ELEMENT ReaderType (#PCDATA)>

 <!ELEMENT IPAddress (#PCDATA)>

 <!ELEMENT CommandPort (#PCDATA)>

 <!ELEMENT MACAddress (#PCDATA)>

 <!ELEMENT Time (#PCDATA)>

 <!ELEMENT Reason (#PCDATA)>

 <!ELEMENT StartTriggerLines (#PCDATA)>

 <!ELEMENT StopTriggerLines (#PCDATA)>

]>

APPENDIX B UPGRADING READER FIRMWARE (GUI)

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

187

APPENDIX B

Upgrading Reader Firmware (GUI)

Periodically, Alien Technology provides improvements and bug fixes to the firmware running inside the
reader. These improvements are distributed as a firmware upgrade file, which is uploaded to the reader
either via a web interface to the reader, or using the Gateway Demonstration Software.

Performing a firmware upgrade typically resets the reader's configuration to a default state, so care
should be taken to record the reader's state before performing the upgrade, then issuing the necessary
commands to return the reader to its pre-upgrade state. Network settings such as DHCP, IP Address, etc.
are not affected.

Readers can be upgraded over the network using the Gateway Demonstration Software. Current readers
do not support upgrading through the serial interface.

Readers can also be upgraded using their built-in web interface. The process is the same for all readers,
but the graphical interface may look different.

ALR-F800 Web Interface

Browse to the reader's web server and navigate to the Admin System page. You will need to enter
your TCP login username and password ("alien" / "password" by default) to access any of the admin
pages.

UPGRADING READER FIRMWARE (GUI) APPENDIX B

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

188

Click the Browse… button and select the firmware file (or reader macro) to upload, and then click the
Install button.

The install progress will be displayed and updated live at the bottom of the screen.

APPENDIX B UPGRADING READER FIRMWARE (GUI)

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

189

ALR-9900/9680/9650 Web Interface

Browse to the reader's web server and navigate to the Reader Management page. You will need to enter
your TCP login username and password ("alien" / "password" by default) to access the Reader
Management page.

Using the form on that page, select the upgrade file and submit the form.

Pulling Firmware Updates

Readers can also be configured to fetch their own updates through the command line, or even when they
are starting up. See the section titled, "Pulling Upgrades", in the next appendix.

UPGRADING READER FIRMWARE (PROGRAMMATIC) APPENDIX C

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

190

APPENDIX C

Upgrading Reader Firmware (Programmatic)

This appendix describes how to push upgrades to an reader, using the standard HTTP POST protocol, as
well as how to configure the reader to automatically pull upgrades down from an FTP or HTTP server.

File Structure of an Upgrade

The typical upgrade file that is provided to customers is an encrypted file. The filenames have the
following format:

 ALRx800_fw_050921.tar.aef

The first portion, "ALRx800" identifies the target reader platform. It may appear as "ALRx800" even if it
applies to the entire model line, since current readers are all descended from the ALR-9800 platform and
use the same firmware builds.

The second portion of the filename, "fw", indicates the component in the reader that is being upgraded
("firmware").

The third portion is the date of the upgrade, in YYMMDD format. It typically matches the YY.MM.DD value
given by the ReaderVersion command.

Finally, the two extensions indicate that the package is a tarball (.tar), and that it has been encrypted
using Alien's own encryption algorithm (.aef = Alien Encrypted File).

Pushing Upgrades

Appendix B already demonstrated how to push upgrades to the reader, using the reader's web interface.
This same interface is available for use by programmers, using the standard HTTP POST mechanism.
Reader firmware upgrades as well as reader macro files (.arm) can all be uploaded to the reader through
this mechanism.

HTTP Post Request
Uploading a file to the reader takes nothing more than issuing a POST request to the reader's web server,
at the URL:
 http://<reader's IP>/cgi-bin/upgrade.cgi

When issuing the request, the following requirements must be adhered to. Implementations vary in how
these requirements are actually accomplished. An example program written in Java is provided for
reference.

 The request method must be POST

 Content-Type for the request must be "multipart/form-data"

 Authentication for the request must be "Basic <BASE64-encoded user:pass>"

 Content-Disposition for the file attachment = "form-data"

 Name for the file attachment = "uploadedFile"

 Filename for the file attachment = <localFilePath>

 Content-Type for the file attachment = "text/plain"

APPENDIX C UPGRADING READER FIRMWARE (PROGRAMMATIC)

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

191

HTTP Post Response
After posting the file to the upgrade CGI, the reader responds with a series of exit codes and the final
disposition of the reader after the upgrade is installed. Each line of the response is terminated with a
single newline character.

The first line of the response indicates the result of the file upload itself. If the file was received and
successfully written to the reader's filesystem, then a "0" (zero) character is returned, otherwise a number
greater than "0", representing the error code, is returned. Note that these are ASCII characters, not the
byte values, 0x00, 0x01, etc.

If an error is encountered while receiving the file, then the second line of the response is a string
describing the nature of the problem, and this concludes the reader's response.

If the upload is successful, the reader attempts to unpack and install the upgrade, and the second line of
the response indicates the result of this step. The result code returned is one of the following:

 0 – Upgrade successful; reboot required.
 1-127 – Upgrade not successful.
 -256 – Upgrade successful; no reboot is required.

In the case of an unsuccessful unpacking or installation, then the third line of the reader's response is a
string describing the nature of the problem. Otherwise, the reader returns one of the following:

 Done – Upgrade complete; no reboot required.
 Rebooting – Upgrade complete; reader is rebooting

Finally, the reader terminates its response with a single null (0x00) value.

Sample Java Implementation
import java.net.*;

import java.io.*;

public class HTTPFilePost {

 private static final String READER_URL = "http://192.168.1.100/cgi-bin/upgrade.cgi";

 private static final String FILE_PATH = "C:\\9800upgrades\\ALR9800_fw_test.tar.aef";

 private static final String CONTENT_BOUNDARY = "pflxm";

 private static final String EOL = "\r\n";

 private static final String username = "alien";

 private static final String password = "password";

 public static final void main(String args[]) {

 FileInputStream fileInputStream = null;

 OutputStream outputToReader = null;

 BufferedReader inputFromReader = null;

 try {

 // Open the connection

 URL testPost = new URL(READER_URL);

 URLConnection conn = testPost.openConnection();

 // Deal with authentication

 String userpass = username + ":" + password;

 String encoding = new sun.misc.BASE64Encoder().encode(userpass.getBytes());

 conn.setRequestProperty("Authorization", "Basic " + encoding);

UPGRADING READER FIRMWARE (PROGRAMMATIC) APPENDIX C

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

192

 // This makes it a POST request

 conn.setDoOutput(true);

 conn.setRequestProperty("Content-Type",

 "multipart/form-data; boundary=" + CONTENT_BOUNDARY);

 outputToReader = conn.getOutputStream();

 // Setup the file and start the http request

 File uploadFile = new File(FILE_PATH);

 fileInputStream = new FileInputStream(uploadFile);

 String requestHeader = "--" + CONTENT_BOUNDARY + EOL

 + "Content-Disposition: form-data; name=\"uploadedFile\";"

 + " filename=\"" + FILE_PATH + "\"" + EOL

 + "Content-Type: text/plain" + EOL + EOL;

 System.out.println("Request Header:\n" + requestHeader);

 outputToReader.write(requestHeader.getBytes());

 // Read from the upgrade file and write it to the reader

 byte[] fileBuffer = new byte[512];

 int totalBytesRead = 0;

 int numBytesRead = fileInputStream.read(fileBuffer, 0, 512);

 while (numBytesRead != -1) {

 totalBytesRead += numBytesRead;

 outputToReader.write(fileBuffer, 0, numBytesRead);

 numBytesRead = fileInputStream.read(fileBuffer, 0, 512);

 }

 System.out.println("Wrote " + totalBytesRead + " bytes from the upgrade file.\n");

 // Close the local upgrade file and finish the POST request

 fileInputStream.close();

 fileInputStream = null;

 String requestFooter = EOL + "--" + CONTENT_BOUNDARY + "--" + EOL;

 System.out.println("Request Footer:\n" + requestFooter);

 outputToReader.write(requestFooter.getBytes());

 // Construct the BufferedReader to get the reader's response

 inputFromReader = new BufferedReader(new InputStreamReader(conn.getInputStream()));

 // Read back the server's response

 String responseLine = inputFromReader.readLine();

 while (responseLine != null) {

 System.out.println("Reader Response: " + responseLine);

 responseLine = inputFromReader.readLine();

 }

 // Close everything

 inputFromReader.close();

 outputToReader.close();

 inputFromReader = null;

 outputToReader = null;

 } catch (Exception ex) {

 ex.printStackTrace();

 } finally {

 if (fileInputStream != null) {

 try { fileInputStream.close(); } catch (Exception ignore_it) {}

 }

 if (inputFromReader != null) {

 try { inputFromReader.close(); } catch (Exception ignore_it) {}

 }

APPENDIX C UPGRADING READER FIRMWARE (PROGRAMMATIC)

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

193

 if (outputToReader != null) {

 try { outputToReader.close(); } catch (Exception ignore_it) {}

 }

 }

 }

} // End of class HTTPFilePost

Sample output from this program:

Request Header:

--pflxm

Content-Disposition: form-data; name="uploadedFile"; filename =

"C:\9800upgrades\ALR9800_fw_test.tar.aef"

Content-Type: text/plain

Wrote 39 bytes from the upgrade file.

Request Footer:

--pflxm--

Reader Response: 0

Reader Response: 0

Reader Response: Rebooting

Reader Response: [null]

Pulling Upgrades

The reader can be configured to connect to an upgrade host and download and install updates on its
own. The only requirement is an HTTP or FTP server that the reader can access to look for updates.
HTTPS (secure HTTP) is also supported.

As opposed to the "push" model described previously (where the host initiates a connection to the reader
and uploads an upgrade file), this "pull" model involves a passive host that the reader initiates a
connection to and downloads an upgrade file from.

Configuring the Reader
There are two properties that need to be configured on the reader in order to facilitate pulling upgrades.

UPGRADEADDRESS
The UpgradeAddress specifies the URL of the directory where the upgrade file can be accessed. Both the
HTTP and FTP protocols are supported, as well as HTTPS, the secure version of HTTP. Since it is a
directory we are specifying, the URLs should all end in a slash. For example:

Alien>UpgradeAddress = http://192.168.1.1/<path>/

UpgradeAddress = http://192.168.1.1/<path>/

Alien>UpgradeAddress = ftp://ftp.mydomain.com/<path>/

UpgradeAddress = ftp://ftp.mydomain.com/<path>/

Alien>UpgradeAddress = https://secureHTTPhost/<path>/

UpgradeAddress = https://secureHTTPhost/<path>/

UPGRADING READER FIRMWARE (PROGRAMMATIC) APPENDIX C

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

194

SPECIFYING USERNAME AND PASSWORD
For the protocols that require authentication, the username and password are prepended to the domain
portion of the UpgradeAddress URL, with a colon separating the username from the password, and an
"@" symbol separating them from the domain. For example:

Alien>UpgradeAddress = ftp://user:password@ftpserver/<path>/

UpgradeAddress = ftp://user:password@ftpserver/<path>/

Enabling Upgrade Pulls
To turn on the upgrade pull mechanism, simply set the NetworkUpgrade property to on.

Alien>NetworkUpgrade = On

NetworkUpgrade = On

Make sure to issue the "save" command after configuring the reader, in order to write the new settings to
flash. Otherwise, when the reader reboots, these settings revert back to their previous values.

Setting up the Upgrade Host
The upgrade host must be running an appropriate service corresponding to the protocol specified in the
reader's UpgradeAddress property.

Place the upgrade file you wish to make available to the readers within the upgrade directory pointed to
by the UpgradeAddress. There can be other files in the directory as well. The particular .tar.aef file that is
pulled down by the reader when it upgrades itself must be listed in a file name "control", which must also
reside in the same upgrade directory.

NETWORKUPGRADE CONTROL FILE
Create a file called "control" inside the upgrade directory. If your server balks at serving files without
extensions, you can optionally name the file "control.txt". This file lists the filenames of the particular
upgrade files that the reader downloads (typically, though, there will only be a single file for upgrading).
Each line listing the upgrade files should be terminated with a single linefeed character ("\n" = 0x0A).

This control file allows you to have multiple versions of reader software on-hand in the upgrade directory,
and control which one is made active by simply changing the entry in the control file. It also ensures that
readers are always pointing at an accessible file, and when a new release is made available, a single
change at the network host enables access to the new file for all configured readers. Readers don't have
to know the particular name of the new upgrade – just where the control file is located.

Control files may also point to reader macros (files ending in .arm). These files are downloaded and
installed in the reader, replacing any macros that may exist with the same names.

All of the firmware files referenced in a control file must be in the same directory as the control file.
Pointing to other directories, for instance "../ALR-x800_fw_070131.tar.aef" or "/alienFirmware/ALR-
x800_fw_070131.tar.aef", is not supported at this time.

How It Works
The reader runs a script that handles pulling upgrade files down from the server and installing them. It
runs this script automatically when the reader boots up, but it can also be triggered through the web
interface or with the UpgradeNow command.

The update script first checks to see if the NetworkUpgrade property is set to "On". If it isn't, the script
exits and the Alien reader subsystem starts up as it normally would.

APPENDIX C UPGRADING READER FIRMWARE (PROGRAMMATIC)

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

195

If the NetworkUpgrade flag is "On", the reader attempts to download the control file located at the URL
specified by the UpgradeAddress property. If no control file is found, the script exits and the Alien reader
subsystem starts up as normal.

If the control file exists, the script looks inside it for a filename, and examines the filename for versioning
information. For example, a typical upgrade file named, "ALR9800_fw_060217.tar.aef", corresponds to a
ReaderVersion of 06.02.17. The script compares this version to what is currently installed in the reader,
and if it is different, it downloads the upgrade, unpacks it, and installs it.

Note that this allows the reader to be back-revved. As long as the upgrade version is different from what
is installed, the upgrade (or downgrade) takes place.

UPGRADING ALR-X800 (PROGRAMMATIC) APPENDIX C

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

196

APPENDIX D

EN 300 220 Duty Cycling

The ALR-9900+ readers configured for operation in European Union (ALR-9900+EMA) implement the
EN 302 220 specification. Operation of an Alien reader under EN 300 220 requires the reader to maintain
a 10% duty cycle for RF emission.

Under normal operating conditions, this requirement may be met if the reader is polled in synchronous
mode comparatively infrequently, by using IO-triggered operation with AutoMode, or by configuring
AutoMode to with continuous duty cycling. This appendix documents a way to run the reader in AutoMode
implementing continuous duty cycling.

Duty Cycle Control in AutoMode

The relative amount of time a reader spends on or off can be controlled by using the Appropriate
AutoStopTimer, AutoTruePause and AutoFalsePause values.
To achieve a 10% duty cycle (where the reader is on for 10% of the time), one could set the following
AutoMode parameters:

 AutoStopTimer = 100 (run for ~100ms before evaluating)
 AutoTruePause = 900
 AutoFalsePause = 900 (set the same as AutoTruePause)

Multiples of these values (500/4500/4500 or 1000/9000/9000) may also be used.

APPENDIX D EN 300 220 DUTY CYCLING

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

197

APPENDIX E

EN 302 208 Operation

The ALR-F800, ALR-9900+ and ALR-9680 readers configured for operation in European Union
(ALR-F800-EMA, ALR-9900+EMA and ALR-9680-EMA) implement the EN 302 208 specification.
The default mode of operation is hopping between 4 channels spaced at 600 kHz.

These readers can also operate in a fixed frequency mode with a maximum continuous transmit time of 4
seconds before pausing for 100ms before transmitting again on the same channel.

Setting Fixed Frequency Operation (ALR-F800/9900+/9680 EMA Only)

To make the reader operate in either the default hopping mode or on a single fixed frequency channel
use the following command:

 RFChannel = <channel>

 Allowed Values: 0-3 or -1 (hopping)

 Default Value: -1 (hopping)

 The 100ms channel dwell time is controlled by the reader. There is no need to
manually duty cycle the reader for this mode of operation.

RFChannel Examples
Command

Response

Alien>RFChannel?

RFChannel = -1 // hopping

Command

Response

// set fixed frequency channel 1

Alien>RFChannel = 1

RFChannel = 1

ERROR CODES APPENDIX F

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

198

APPENDIX F

Error Codes

The following tables list the error codes and error messages generated by the reader, and brief
descriptions of how and why they are generated.

General Errors (1-49)

Error

Error Message

Details

1 Command not understood.

A command was issued which the reader does not understand.

4 Invalid use of command.

A valid command is being used improperly (changing a read-only command,
no "get" or "set" when required, etc.)

5 Timeout waiting for user command.

The user started typing a command, and didn't finish within 60 seconds.

7 Command requires a value in the format Command=Value.

A command requiring a value was not provided a value.

10 Value out of range.

An argument was supplied that was not in the valid range (string length, non-
integer when integer expected, outside min/max bounds).

19 Invalid Username and/or Password.

A TCP login attempts failed the username/password check.

22 Invalid IP address.

A supplied IP address argument doesn't look like a valid IP address.

24 Invalid format.

The structure of the supplied arguments is wrong.

27 Invalid context.

Selected tag protocol doesn't support a data size (e.g. EPC length) or
command (e.g. Unlock when ProgProtocol != 2).

28 Unknown error.

(internal errors)

29 Parameter required.

A notification was attempted, but no NotifyAddress was specified.

34 Invalid mask.

bitPtr + bitLen larger than EPC memory, or bitLen doesn't match provided
mask bytes.

36 Unable to deliver notification.

A problem was encountered trying to send a notification message.

37 Input buffer overflow.

Too many characters were entered on a single command line.

39 Timeout waiting for command response.

A command was issued to an internal reader component and no reply was
received after 60 seconds.

38 Invalid parameter.

A parameter to a command is invalid – a macro name, with no corresponding
macro, for instance.

APPENDIX F ERROR CODES

READER INTERFACE GUIDE
DOC. CONTROL #8101938-000 REV Y

199

Macro Errors (50-60)

Error

Error Message

Details

51 Macro name is missing.

The command requires a macro name, and it is missing.

53 Macro name is too long.

The macro name exceeds 64 characters in length.

54 Macro does not exist.

You are trying to run or delete a macro that can't be found.

55 The supplied macro is empty.

You are trying to run a macro that has no commands.

60 Macro access error.

You are trying to run or delete a macro, and the reader does not have
necessary filesystem permissions.

DSP Errors (128-255)

Error

(dec)

Error

(hex)

Error Message

Details

133 0x85 Memory overrun.

A non-existent memory location was accessed.

134 0x86 No tag found.

A program operation was attempted, and no tag was found in the
field.

135 0x87 Erase failed.

An attempt to erase a tag failed.

136 0x88 Program failed.

An attempt to program data into a tag failed to write.

137 0x89 Tag is locked.

An attempt was made to program locked tag data.

138 0x8A Kill failed. Check the kill password.

An attempt to kill a tag failed. Either the tag cannot be killed, or the
wrong password was used.

139 0x8B Lock attempt failure.

An attempt to lock a tag's data failed.

140 0x8C Tag data memory size mismatch.

An incorrect amount of data was attempted to be written.

141 0x8D Hardware error.

Trouble accessing a component of the radio hardware.

146 0x92 Lock failed CRC error.

The tag failed a CRC check after locking.

147 0x93 A previously found tag is not responding to program operations.

148 0x94 Kill Pwd could not be verified during Lock, no Lock performed.

During a C1 lock operation, the Kill Pwd failed to be written.

149 0x95 Singulation error

Multiple tags responded to a command.

ERROR CODES APPENDIX F

 READER INTERFACE GUIDE
 DOC. CONTROL #8101938-000 REV Y

200

154 0x9A Read error.

Unknown tag error.

157 0x9D No tag found matching the provided EPC.

EPC specified in a Kill operation doesn't any tags in the field.

158 0x9E Access failed.

The provided AcqG2AccessPwd doesn't match the tag's Access Pwd.

159 0x9F Malformed Tag response on write.

The tag's asynchronous response to a write operation could not be
decoded.

G2 Tag Errors (256-511)
These are the raw error codes that are returned by a G2 tag during either one of the low-level G2Read
and G2Write commands.

Error

Error Message

Details

256 (Tag Error) Other error.

G2 tag error not covered by other error codes.

259 (Tag Error) Memory overrun or unsupported PC value.

A non-existent memory location was accessed, or the desired PC value is not
supported by the tag.

260 (Tag Error) Memory locked.

An attempt was made to access locked tag memory.

267 (Tag Error) Insufficient power.

The tag has insufficient power to perform a memory write operation.

271 (Tag Error) Non-specific error.

Tag error (when error-specific codes are not supported by the tag).

